Skip to main content
Log in

Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Sugarcane ethanol production occurs in non-sterile conditions, and microbial contamination can decrease productivity. In this study, we assessed the microbial diversity of contaminants of ethanol production in an industrial facility in Brazil. Samples obtained at different stages were analyzed by pyrosequencing-based profiling of bacterial and archaeal 16S rRNA genes and the fungal internal transcribed spacer region. A total of 355 bacterial groups, 22 archaeal groups, and 203 fungal groups were identified, and community changes were related to temperature changes at certain stages. After fermentation, Lactobacillus and unclassified Lactobacillaceae accounted for nearly 100 % of the bacterial sequences. Predominant Fungi groups were “unclassified Fungi,” Meyerozyma, and Candida. The predominant Archaea group was unclassified Thaumarchaeota. This is the first work to assess the diversity of Bacteria, and Archaea and Fungi associated with the industrial process of sugarcane-ethanol production using culture-independent techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdullah SK, Saleh YA (2010) Mycobiota associated with sugarcane (Saccharum officinarum L.) cultivars in Iraq. Jordan J Biol Sci 3(4):193–202

  2. Abdullah SK, Saleh YA (2010) Mycobiota associated with sugarcane (Saccharum officinarum L.) in Iraq. Mitosporic fungi. J Duhok Univ 13(1):130–138

  3. Alcarde AR, Walder JMM, Horii J (2003) Fermentation of irradiated sugarcane must. Sci Agric (Piracicaba, Braz) 60(4):677–681

    Article  CAS  Google Scholar 

  4. Basílio ACM, de Araújo PRL, de Morais JOF, da Silva Filho EA, de Morais MA, Simões DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56(4):322–326. doi:10.1007/s00284-007-9085-5

    Article  PubMed  Google Scholar 

  5. Bayrock DP, Ingledew WM (2004) Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity? J Ind Microbiol Biotechnol 31(8):362–368. doi:10.1007/s10295-004-0156-3

    Article  CAS  PubMed  Google Scholar 

  6. Bayrock DP, Thomas KC, Ingledew WM (2003) Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G. Appl Microbiol Biotechnol 62:498–502. doi:10.1007/s00253-003-1324-5

    Article  CAS  PubMed  Google Scholar 

  7. Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394. doi:10.1111/j.1472-765X.2011.03124.x

    Article  CAS  PubMed  Google Scholar 

  8. Bhothipaksa K, Busta FF (1978) Osmotically induced increase in thermal resistance of heat-sensitive, dipicolinic acid-less spores of Bacillus cereus Ht-8. Appl Environ Microbiol 35(4):800–808

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM (1997) Molecular phylogeny of Archaea from soil. Proc Natl Acad Sci USA 94(1):277–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO (2009) Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol Bioeng 103(1):117–122. doi:10.1002/bit.22244

    Article  CAS  PubMed  Google Scholar 

  11. BNDES, CGEE (2008) Bioetanol de cana-de-açúcar: energia para o desenvolvimento sustentável, 1st ed. BNDES, Rio de Janeiro

  12. Boddey R, Urquiaga S, Alves BR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252(1):139–149. doi:10.1023/a:1024152126541

    Article  CAS  Google Scholar 

  13. Brady CL, Venter SN, Cleenwerck I, Vandemeulebroecke K, De Vos P, Coutinho TA (2009) Transfer of Pantoea citrea, Pantoea punctata and Pantoea terrea to the genus Tatumella emend. as Tatumella citrea comb. nov., Tatumella punctata comb. nov. and Tatumella terrea comb. nov. and description of Tatumella morbirosei sp. nov. Int J Syst Evol Microbiol 60(3):484–494. doi:10.1099/ijs.0.012070-0

    Article  PubMed  Google Scholar 

  14. Brasil (2014) Boletim mensal dos combustíveis renováveis. Janeiro/2014. Ministério de Minas e Energia (MME), Brasília

  15. Brasil (2014) Relação das unidades produtoras cadastradas no Departamento da Cana-de-açúcar e Agroenergia (Maio/14). Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Brasília

  16. Brochier-Armanet C, Gribaldo S, Forterre P (2011) Spotlight on the Thaumarchaeota. ISME J 6(2):227–230. doi:10.1038/ismej.2011.145

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cabrini KT, Gallo CR (1999) Identificação de leveduras no processo de fermentação alcoólica em usina no estado de São Paulo, Brasil. Sci Agric (Piracicaba, Braz) 56(1):207–216  

  18. Camolez MA, Mutton MJR (2005) Influência de microrganismos contaminantes sobre o processo fermentativo. STAB 23(5):6–9

  19. Cao P, Zhang L-M, Shen J-P, Zheng Y-M, Di HJ, He J-Z (2012) Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol Ecol 80(1):146–158. doi:10.1111/j.1574-6941.2011.01280.x

    Article  CAS  PubMed  Google Scholar 

  20. Castro MMdS (1995) Leveduras contaminantes do processo de fermentação alcoólica: diversidade taxonômica e metabólica. Dissertação, Universidade estadual de campinas, Campinas

  21. Chang I-S, Byung-Hong K, Pyong-Kyun S, Wan-Kyu L (1995) Bacterial contamination and its effects on ethanol fermentation. J Microbiol Biotechnol 5(6):304–314

    Google Scholar 

  22. Chang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl Environ Microbiol 63(1):1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Cherubin RA (2003) Efeitos da viabilidade da levedura e da conaminação bacteriana na fermentação alcoólica. Tese, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba

    Google Scholar 

  24. Chieppe Júnior JB (2012) Tecnologia e fabricação do álcool. Universidade Federal de Santa Maria, Inhumas

    Google Scholar 

  25. Conab (2012) Perfil do setor do açúcar e do álcool no Brasil—Edição para a safra 2009–2010. Companhia Nacional de Abastecimento (Conab), Brasília

  26. Conab (2014) Acompanhamento de safra brasileira: cana-de-açúcar, quarto levantamento, abril/2014. Companhia Nacional de Abastecimento (Conab), Brasília

  27. Cunha IS, Barreto CC, Costa OYA, Bomfim MA, Castro AP, Kruger RH, Quirino BF (2011) Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil. Anaerobe 17(3):118–124. doi:10.1016/j.anaerobe.2011.04.018

    Article  PubMed  Google Scholar 

  28. David V, Terrat S, Herzine K, Claisse O, Rousseaux S, Tourdot-Maréchal R, Masneuf-Pomarede I, Ranjard L, Alexandre H (2014) High-throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation. J Ind Microbiol Biotechnol 41(5):811–821. doi:10.1007/s10295-014-1427-2

    Article  CAS  PubMed  Google Scholar 

  29. de Azeredo LA, A. GE, Mendonca-Hagler LC, Hagler AN (1998) Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brazil. Int Microbiol 1(3):205–208  

  30. de Carvalho GG, Monteiro RAB (2011) A influência do teor de acidez e da contaminação bacteriana do mosto no rendimento fermentativo industrial para produção de etanol. FAZU 8:47–54

    Google Scholar 

  31. de Souza Liberal AT, da Silva Filho EA, de Morais JO, Simoes DA, de Morais MA, Jr (2005) Contaminant yeast detection in industrial ethanol fermentation must by rDNA-PCR. Lett Appl Microbiol 40(1):19–23

  32. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89(12):5685–5689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dicks LMT, Van Vuuren HJJ, Dellaglio F (1990) Taxonomy of Leuconostoc species, particularly Leuconostoc oenos, as revealed by numerical analysis of total soluble cell protein patterns, DNA base compositions, and DNA–DNA hybridizations. Int J Syst Bacteriol 40(1):83–91. doi:10.1099/00207713-40-1-83

    Article  Google Scholar 

  34. Dong Z, Heydrich M, Bernard K, McCully ME (1995) Further evidence that the N(inf2)-fixing endophytic bacterium from the intercellular spaces of sugarcane stems is Acetobacter diazotrophicus. Appl Environ Microbiol 61(5):1843–1846

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Gallo CR (1989) Determinação da microbiota bacteriana de mosto e de dornas de fermentação alcoólica. Universidade Estadual de Campinas, São Paulo, Tese

    Google Scholar 

  36. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118

    Article  CAS  PubMed  Google Scholar 

  37. Goldemberg J, Macedo IC (1994) Brazilian alcohol program. An overview. Energy Sust Dev 1(1)

  38. Granhall U, Welsh A, Throbäck IN, Hjort K, Hansson M, Hallin S (2010) Bacterial community diversity in paper mills processing recycled paper. J Ind Microbiol Biotechnol 37(10):1061–1069. doi:10.1007/s10295-010-0754-1

    Article  CAS  PubMed  Google Scholar 

  39. Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64(3):960–969

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in Bacterial and Archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74(5):1620–1633. doi:10.1128/aem.01787-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hoon C, Park S-Y, Ryu C-M, Kim JF, Park S-H, Park CS (2005) Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J Microbiol Biotechnol 15(6):1286–1298   

  42. Hu H-W, Zhang L-M, Yuan C-L, He J-Z (2013) Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns. Soil Biol Biochem 64:18–27. doi:10.1016/j.soilbio.2013.04.003

    Article  CAS  Google Scholar 

  43. Hynes SH, Kjarsgaard DM, Thomas KC, Ingledew WM (1997) Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation. J Ind Microbiol Biotechnol 18(4):284–291

    Article  CAS  PubMed  Google Scholar 

  44. Ignatova-Ivanova T, Ivanov R (2013) Anticorrosion effect of biofilm forming by Lactobacillus strains on metal surfaces. Bulg J Agric Sci 19(2):83–85

  45. Imhoff JF (2005) Enterobacteriales. In: Brenner D, Krieg N, Staley J et al (eds) Bergey’s manual® of systematic bacteriology. Springer US, pp 587–850. doi:10.1007/0-387-28022-7_13

  46. Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature (London) 409(6819):507–510. doi:10.1038/35054051

    Article  CAS  Google Scholar 

  47. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22(21):5271–5277. doi:10.1111/mec.12481

    Article  PubMed  Google Scholar 

  48. Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H (2008) Biofilm formation by Lactic Acid Bacteria and resistance to environmental stress. J Biosci Bioeng 106(4):381–386. doi:10.1263/jbb.106.381

    Article  CAS  PubMed  Google Scholar 

  49. Lane DJ (1991) 16S/23S sequencing. In: Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York

  50. Leja K, Broda M (2009) The occurrence and identification of microbiological contamination in fuel ethanol production. Acta Sci Pol 8(4):25–31

  51. Limtong S, Kaewwichian R, Yongmanitchai W, Kawasaki H (2014) Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biot 30(6):1785–1796. doi:10.1007/s11274-014-1602-7

    Article  CAS  Google Scholar 

  52. Loiret FG, Ortega, Kleiner D, Ortega-Rodes P, Rodes R, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97(3):504–511

    Article  CAS  PubMed  Google Scholar 

  53. Lozupone C, Hamady M, Knight R (2006) UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform 7:371. doi:10.1186/1471-2105-7-371

    Article  Google Scholar 

  54. Lucena BT, dos Santos BM, Moreira JL, Moreira AP, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, De Morais MA Jr (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 10:298. doi:10.1186/1471-2180-10-298

    Article  PubMed Central  PubMed  Google Scholar 

  55. Madigan MT, Martinko JM, Parker J (2004) Brock, Biología de Los Microorganismos, 10th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  56. Makanjuola DB, Springham DG (1984) Identification of lactic acid bacteria isolated from different stages of malt whisky distillery fermentations. J Inst Brew 90:13–19

    Article  Google Scholar 

  57. Makanjuola DB, Tymon A, Springham DG (1992) Some effects of lactic acid bacteria on laboratory-scale yeast fermentations. Enzyme Microb Tech 14(5):350–357. doi:10.1016/0141-0229(92)90002-6

    Article  CAS  Google Scholar 

  58. Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49(2):351–359

    Article  PubMed  Google Scholar 

  59. Merlino G, Rizzi A, Villa F, Sorlini C, Brambilla M, Navarotto P, Bertazzoni B, Zagni M, Araldi F, Daffonchio D (2012) Shifts of microbial community structure during anaerobic digestion of agro-industrial energetic crops and food industry byproducts. J Chem Technol Biotechnol 87(9):1302–1311. doi:10.1002/jctb.3784

    Article  CAS  Google Scholar 

  60. Murray RG, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45(1):186–187

    Article  CAS  PubMed  Google Scholar 

  61. Narendranath NV, Hynes SH, Thomas KC, Ingledew WM (1997) Effects of Lactobacilli on yeast-catalyzed ethanol fermentations. Appl Environ Microbiol 63(11):4158–4163

    CAS  PubMed Central  PubMed  Google Scholar 

  62. TdP Nobre, Horii J, Alcarde AR (2007) Viabilidade celular de Saccharomyces cerevisiae cultivada em associação com bactérias contaminantes da fermentação alcoólica. Ciên Tecnol Alim 27:20–25

    Article  Google Scholar 

  63. Perin L, Baldani JI, Reis VM (2004) Diversidade de Gluconacetobacter diazotrophicus isolada de plantas de cana-de-açúcar cultivadas no Brasil. Pesq Agropec Bras 39:763–770

    Google Scholar 

  64. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14(3):300–306. doi:10.1016/j.mib.2011.04.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. doi:10.1093/nar/gks1219

    Article  Google Scholar 

  66. Quecine MC, l. AW, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M, Azevedo JL, Pizzirani-Kleiner AA (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans. Appl Environ Microbiol 78(21)

  67. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 12(1):38. doi:10.1186/1471-2105-12-38

    Article  Google Scholar 

  68. Rennie RJ, Freitas JRd, Ruschel AP, Vose PB (1982) Isolation and identification of N2-fixing bacteria associated with sugar cane (Saccharum sp.). Can J Microbiol 28(5):462–467. doi:10.1139/m82-070

  69. RFA (2013) World Fuel Ethanol Production. Renewable Fuels Association. http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production. Accessed 25.07.2014

  70. Rich JO, Leathers TD, Nunnally MS, Bischoff KM (2011) Rapid evaluation of the antibiotic susceptibility of fuel ethanol contaminant biofilms. Bioresour Technol 102(2):1124–1130. doi:10.1016/j.biortech.2010.08.118

    Article  CAS  PubMed  Google Scholar 

  71. Salminen S, Av Wright, Lahtinen S, Ouwehand A (2012) Lactic acid bacteria: microbiological and functional aspects, 4th edn. Marcel Dekker, New York

    Google Scholar 

  72. Santoro AE, Casciotti KL (2011) Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME J 5(11):1796–1808

  73. Schleper C, Puhler G, Kuhlmorgen B, Zillig W (1995) Life at extremely low pH. Nature (London) 375(6534):741–742. doi:10.1038/375741b0

    Article  CAS  Google Scholar 

  74. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

  75. Ka Skinner-Nemec, Nichols NN, Leathers TD (2007) Biofilm formation by bacterial contaminants of fuel ethanol production. Biotechnol Lett 29:379–383. doi:10.1007/s10529-006-9250-0

    Article  Google Scholar 

  76. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31(9):401–408. doi:10.1007/s10295-004-0159-0

    Article  CAS  PubMed  Google Scholar 

  77. Stahl DA, Amann RI (1991) Development and application of nucleic acid probes in bacterial systematics In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York

  78. Thomas KC, Hynes SH, Ingledew WM (2001) Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. J Appl Microbiol 90(5):819–828

    Article  CAS  PubMed  Google Scholar 

  79. Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71(11):7292–7300. doi:10.1128/aem.71.11.7292-7300.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Tortora GJ, Funke BR, Case CL (2012) Microbiologia, 10th edn. Artmed, Porto Alegre

    Google Scholar 

  81. Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among Cyanobacteria and plastids by small subunit rRNA sequence analysis. J Euk Microbiol 46(4):327–338. doi:10.1111/j.1550-7408.1999.tb04612.x

    Article  CAS  PubMed  Google Scholar 

  82. UNICA (2014) Maior produtor mundial de cana-de-açúcar. União da indústria de cana-de-açúcar. http://www.unica.com.br/faq/. Accessed 24 July 2014

  83. White J, Gilbert J, Hill G, Hill E, Huse SM, Weightman AJ, Mahenthiralingam E (2011) Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobic cultivation. Appl Environ Microbiol 77(13):4527–4538. doi:10.1128/aem.02317-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego

    Google Scholar 

  85. Whitehead TR, Cotta MA (1999) Phylogenetic diversity of methanogenic archaea in swine waste storage pits. FEMS Microbiol Lett 179(2):223–226. doi:10.1016/S0378-1097(99)00415-2

    Article  CAS  PubMed  Google Scholar 

  86. Wright A-DG, Ma X, Obispo NE (2007) Methanobrevibacter phylotypes are the dominant methanogens in sheep from venezuela. Microb Ecol 56(2):390–394. doi:10.1007/s00248-007-9351-x

    Article  PubMed  Google Scholar 

  87. Zhu XY, Lubeck J, Kilbane JJ (2003) Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69(9):5354–5363. doi:10.1128/aem.69.9.5354-5363.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

O.Y.A.C. was supported by a CNPq fellowship. This work was supported by grant from CNPq, FAD-DF, Embrapa.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betania Ferraz Quirino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, O.Y.A., Souto, B.M., Tupinambá, D.D. et al. Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J Ind Microbiol Biotechnol 42, 73–84 (2015). https://doi.org/10.1007/s10295-014-1533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1533-1

Keywords

Navigation