Skip to main content
Log in

Methanobrevibacter Phylotypes are the Dominant Methanogens in Sheep from Venezuela

  • Brief Report
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Rumen methanogens in sheep from Venezuela were examined using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE) profiles prepared from pooled and individual PCR products from the rumen contents from 10 animals. A total of 104 clones were examined, revealing 14 different 16S rRNA gene sequences or phylotypes. Of the 14 phylotypes, 13 (99 of 104 clones) belonged to the genus Methanobrevibacter, indicating that the genus Methanobrevibacter is the most dominant component of methanogen populations in sheep in Venezuela. The largest group of clones (41 clones) was 97.9–98.5% similar to Methanobrevibacter gottschalkii. Two sequences were identified as possible new species, one belonging to the genus Methanobrevibacter and the other belonging to the genus Methanobacterium. DGGE analysis of the rumen contents from individual animals also revealed 14 different bands with a range of 4–9 bands per animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  1. Christophersen CT, Wright A-DG, Vercoe PE (2004) Examining diversity of free living methanogens and those associated with protozoa in the rumen. J Anim Feed Sci 13:51–54

    Google Scholar 

  2. de Rijk P, de Wachter R (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9:735–740

    PubMed  Google Scholar 

  3. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) documentation files. Version 3.62c. Department of Genetics, University of Washington, Seattle, Washington

    Google Scholar 

  4. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  5. Irbis C, Ushida K (2004) Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 50:203–212

    Article  PubMed  CAS  Google Scholar 

  6. Kimura M (1980) A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  7. Miller TL, Wolin MJ (1986) Methanogens in human and animal digestive tracts. Syst Appl Microbiol 7:223–229

    CAS  Google Scholar 

  8. Primera Comunicación Nacional en Cambio Climático de Venezuela (2005) Caracas, Republica Bolivariana de Venezuela. 164 pp

  9. Saito N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  10. Sharp R, Ziemer CJ, Marshall DS, Stahl DA (1998) Taxon-specific associations between protozoal and methanogen populations in the rumen and a model system. FEMS Microbiol Ecol 26:71–78

    Article  CAS  Google Scholar 

  11. Skillman LC, Evans PN, Strompl C, Joblin KN (2006) 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett Appl Microbiol 42:222–228

    Article  PubMed  CAS  Google Scholar 

  12. Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10:277–285

    Article  PubMed  CAS  Google Scholar 

  13. Snell-Castro R, Godon JJ, Delgenes JP, Dabert P (2005) Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis. FEMS Microbiol Ecol 52:229–242

    Article  PubMed  CAS  Google Scholar 

  14. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA:DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  15. Tajima K, Nagamine T, Matsui H, Nakamura M, Rustam I, Aminov RI (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72

    Article  PubMed  CAS  Google Scholar 

  16. Tokura M, Chagan I, Ushida K, Kojima Y (1999) Phylogenetic study of methanogens associated with rumen ciliates. Curr Microbiol 39:123–128

    Article  PubMed  CAS  Google Scholar 

  17. Whitford MF, Teather RM, Forster RJ (2001) Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 1:5

    Article  PubMed  CAS  Google Scholar 

  18. Wright A-DG, Pimm C (2003) Improved strategy for presumptive identification of methanogens using 16S riboprinting. J Microbiol Methods 55:337–349

    Article  PubMed  CAS  Google Scholar 

  19. Wright A-DG, Toovey AF, Pimm CL (2006) Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea. Anaerobe 12:134–139

    Article  PubMed  CAS  Google Scholar 

  20. Wright A-DG, Williams AJ, Winder B, Christophersen C, Rodgers S, Smith K (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70:1263–1270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mark Morrison and Dr. Chris McSweeney (CSIRO Livestock Industries, Brisbane, Australia) for their critical comments on this manuscript. Part of this research was supported by FONACIT (Project: BID-FONACIT 26231), Venezuela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André-Denis G. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, AD.G., Ma, X. & Obispo, N.E. Methanobrevibacter Phylotypes are the Dominant Methanogens in Sheep from Venezuela. Microb Ecol 56, 390–394 (2008). https://doi.org/10.1007/s00248-007-9351-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9351-x

Keywords

Navigation