Skip to main content
Log in

A large diversity of lactic acid bacteria species is involved in the fermentation of wheat used for the manufacture of lemzeiet

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Algerian couscous named lemzeiet is manufactured from fermented wheat. Historically performed in underground silos called matmor, the fermentation of wheat is now generally carried out in plastic jerrycans with or without addition of vinegar at the beginning of the fermentation. Culture-dependent and culture-independent methods (PCR-TTGE) were used to characterize lactic acid bacteria and to determine their dynamic and diversity over a two-year period, with and without the addition of vinegar. Fungi, physicochemical characteristics, and volatile compound profiles were also monitored. The isolates obtained from different stages of fermentation and from both processes were characterized by coupling different molecular methods (16SrRNA/pheS/rpoA gene sequencing, species-specific PCR, RAPD and PFGE). PCR-TTGE revealed very similar profiles for both processes. Sixty-nine isolates were identified as belonging to six genera of 16 species (Enterococcus, Lactobacillus, Leuconostoc, Pediococcus, Weissella, and Streptococcus). The profiles of volatile aroma compounds showed a marked effect of the fermentation process, compared to non-fermented wheat, with 35 of the 40 volatiles detected at amounts 20- to 30-fold higher in fermented wheat samples. This study gives the first insight into lactic acid bacteria population diversity and activity in fermented wheat and will contribute to a better control of the fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BHYE:

Brain heart infusion yeast extract

CFU:

Colony forming unit

DMS:

Dimethyl sulfide

DMDS:

Dimethyl disulfide

FA:

Fat acidity

GC–MS:

Gas chromatography–mass spectrometry

HS:

Headspace

LAB:

Lactic acid bacteria

LSD:

Least significant difference

MA:

Malt agar

MRS:

Man Rogosa and Sharpe

OAIC:

Office algérien interprofessionnel des céréales

PCA:

Principal component analysis

pheS :

Phenylalanyl-t-RNA synthetase alpha-subunit

PFGE:

Pulsed-field gel electrophoresis

RAPD:

Random amplified polymorphic DNA

rpoA :

RNA polymerase alpha-subunit

TTA:

Titratable acidity

TTGE:

Temporal temperature gradient gel electrophoresis

UPGMA:

Unweighted pair group method with arithmetic mean

VBNC:

Viable but non-culturable

References

  1. Tamang JP (2010) Diversity of fermented foods. In: Tamang JP, Kailasphaty K (eds) Fermented foods and beverages of the world. CRC Press/Taylor & Francis, Boca Raton

    Chapter  Google Scholar 

  2. Saavedra L, Hebert EM, Minahk C, Ferranti P (2013) An overview of “omic” analytical methods applied in bioactive peptide studies. Food Res Int 54:925–934

    Article  CAS  Google Scholar 

  3. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230

    Article  CAS  Google Scholar 

  4. Saxelin M, Tynkkynen S, Mattila-Sandholm T, De Vos WM (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 16:204–211

    Article  CAS  Google Scholar 

  5. Humblot C, Guyot JP (2008) Other fermentations. In: Cocolin L, Ercolini D (eds) Molecular techniques in the microbial ecology of fermented foods. Springer, New York

    Google Scholar 

  6. Guyot JP (2010) Fermented cereal products. In: Tamang JP, Kailasphaty K (eds) Fermented foods and beverages of the world. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  7. Guyot JP (2012) Cereal-based fermented foods in developing countries: ancient foods for modern research: cereal-based fermented foods. Int J Food Sci Technol 47:1109–1114

    Article  CAS  Google Scholar 

  8. Motarjemi Y (2002) Impact of small scale fermentation technology on food safety in developing countries. Int J Food Microbiol 75:213–229

    Article  Google Scholar 

  9. Abriouel H, Omar NB, López RL, Martínez-Cañamero M, Keleke S, Gálvez A (2006) Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and dégué by using three different DNA extraction methods. Int J Food Microbiol 111:228–233

    Article  CAS  Google Scholar 

  10. Tou EH, Guyot JP, Mouquet-Rivier C, Rochette I, Counil E, Traoré AS, Trèche S (2006) Study through surveys and fermentation kinetics of the traditional processing of pearl millet (Pennisetum glaucum) into ben-saalga, a fermented gruel from Burkina Faso. Int J Food Microbiol 106:52–60

    Article  CAS  Google Scholar 

  11. Adebolu TT, Olodun AO, Ihunweze BC (2007) Evaluation of ogi liquor from different grains for antibacterial activities against some common diarrhoeal bacteria in Southwest Nigeria. Afr J Biotechnol 6:1140–1143

    Google Scholar 

  12. Lartey A, Manu A, Brown KH, Peerson JM, Dewey KG (1999) A randomized, community-based trial of the effects of improved, centrally processed complementary foods on growth and micronutrient status of Ghanaian infants from 6 to 12 mo of age. Am J Clin Nutr 70:391–404

    CAS  Google Scholar 

  13. Mugula JK, Nnko SAM, Sørhaug T (2001) Changes in quality attributes during storage of togwa, a lactic acid fermented gruel. J Food Saf 21:181–194

    Article  CAS  Google Scholar 

  14. Oguntoyinbo FA, Narbad A (2012) Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods. Food Microbiol 31:254–262

    Article  CAS  Google Scholar 

  15. Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36:527–543

    Article  CAS  Google Scholar 

  16. Bekhouche F, Merabti R, Bailly JD (2013) “Lemzeiet” traditional couscous manufacture from fermented wheat (Algeria): investigation of the process and estimation of the technological and nutritional quality. Afr J Sci Technol 4(8):167–175

    Google Scholar 

  17. Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813

    CAS  Google Scholar 

  18. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150

    Article  CAS  Google Scholar 

  19. Petri A, Pfannebecker J, Fröhlich J, König H (2013) Fast identification of wine related lactic acid bacteria by multiplex PCR. Food Microbiol 33:48–54

    Article  CAS  Google Scholar 

  20. Gosiewski T, Chmielarczyk A, Strus M, Brzychczy-Woch M, Heczko P (2012) The application of genetics methods to differentiation of three Lactobacillus species of human origin. Ann Microbiol 62:1437–1445

    Article  CAS  Google Scholar 

  21. Smith CL, Cantor CR (1987) Purification, specific fragmentation, and separation of large DNA molecules. In: Ray Wu (ed) Methods in enzymology. Academic Press, London

    Google Scholar 

  22. Licitra G, Ogier JC, Parayre S, Pediliggieri C, Carnemolla TM, Falentin H, Madec MN, Carpino S, Lortal S (2007) Variability of bacterial biofilms of the “tina” wood vats used in the Ragusano cheese-making process. Appl Environ Microbiol 73:6980–6987

    Article  CAS  Google Scholar 

  23. Parayre S, Falentin H, Madec MN, Sivieri K, Le Dizes AS, Sohier D, Lortal S (2007) Easy DNA extraction method and optimisation of PCR-temporal temperature gel electrophoresis to identify the predominant high and low GC-content bacteria from dairy products. J Microbiol Methods 69:431–441

    Article  CAS  Google Scholar 

  24. Pogačić T, Maillard MB, Leclerc A, Hervé C, Chuat V, Yee AL, Valence F, Thierry A (2015) A methodological approach to screen diverse cheese-related bacteria for their ability to produce aroma compounds. Food Microbiol 46:145–153

    Article  Google Scholar 

  25. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  Google Scholar 

  26. Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314

    Article  CAS  Google Scholar 

  27. Giraffa G, Neviani E (2001) DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. Int J Food Microbiol 67:19–34

    Article  CAS  Google Scholar 

  28. Lei V, Jakobsen M (2004) Microbiological characterization and probiotic potential of koko and koko sour water, African spontaneously fermented millet porridge and drink. J Appl Microbiol 96:384–397

    Article  CAS  Google Scholar 

  29. Mugula JK, Nnko SAM, Narvhus JA, Sørhaug T (2003) Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int J Food Microbiol 80:187–199

    Article  CAS  Google Scholar 

  30. Yousif NMK, Huch M, Schuster T, Cho GS, Dirar HA, Holzapfel WH, Franz CMAP (2010) Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Food Microbiol 27:757–768

    Article  CAS  Google Scholar 

  31. Haas GJ, Prescott HE, Dudley E, Dik R, Hintlian C, Keane L (1989) Inactivation of microorganisms by carbon dioxide under pressure. J Food Saf 9:253–265

    Article  Google Scholar 

  32. Jones RP, Greenfield PF (1982) Effect of carbon dioxide on yeast growth and fermentation. Enzyme Microb Technol 4:210–223

    Article  CAS  Google Scholar 

  33. Crowley S, Mahony J, van Sinderen D (2013) Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci Technol 33:93–109

    Article  CAS  Google Scholar 

  34. Mandal V, Sen SK, Mandal NC (2013) Production and partial characterisation of an inducer-dependent novel antifungal compound(s) by Pediococcus acidilactici LAB 5. J Sci Food Agric 93:2445–2453

    Article  CAS  Google Scholar 

  35. De Roissart H, Luquet FM (1994) Metabolisme general des bacteries lactiques. Bactéries lactiques: aspects fondamentaux et technologiques. Lorica 1:169–207

    Google Scholar 

  36. Collins YF, McSweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 13:841–866

    Article  CAS  Google Scholar 

  37. Kostinek M, Specht I, Edward VA, Pinto C, Egounlety M, Sossa C, Mbugua S, Dortu C, Thonart P, Taljaard L, Mengu M, Franz CMAP, Holzapfel WH (2007) Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures. Int J Food Microbiol 114:342–351

    Article  CAS  Google Scholar 

  38. Humblot C, Guyot JP (2009) Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl Environ Microbiol 75:4354–4361

    Article  CAS  Google Scholar 

  39. Wu JJ, Ma YK, Zhang FF, Chen FS (2012) Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiol 30:289–297

    Article  CAS  Google Scholar 

  40. Madoroba E, Steenkamp ET, Theron J, Scheirlinck I, Eugene Cloete T, Huys G (2011) Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food. Syst Appl Microbiol 34:227–234

    Article  Google Scholar 

  41. Sekwati-Monang B, Valcheva R, Gänzle MG (2012) Microbial ecology of sorghum sourdoughs: effect of substrate supply and phenolic compounds on composition of fermentation microbiota. Int J Food Microbiol 159:240–246

    Article  CAS  Google Scholar 

  42. Ben Omar N, Ampe F (2000) Microbial community dynamics during production of the mexican fermented maize dough pozol. Appl Environ Microbiol 66:3664–3673

    Article  CAS  Google Scholar 

  43. Hamad SH, Dieng MC, Ehrmann MA, Vogel RF (1997) Characterization of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J Appl Microbiol 83:764–770

    Article  CAS  Google Scholar 

  44. M’hir S, Minervini F, Di Cagno R, Chammem N, Hamdi M (2012) Technological, functional and safety aspects of enterococci in fermented vegetable products: a mini-review. Ann Microbiol 62:469–481

    Article  Google Scholar 

  45. Giraffa G, Carminati D (2008) Molecular techniques in food fermentation: principles and applications. Molecular Techniques in the microbial ecology of fermented foods. Springer, New York

    Google Scholar 

  46. Mallia S, Escher F, Schlichtherle-Cerny H (2008) Aroma-active compounds of butter: a review. Eur Food Res Technol 226:315–325

    Article  CAS  Google Scholar 

  47. Yvon M, Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int Dairy J 11:185–201

    Article  CAS  Google Scholar 

  48. Holland R, Liu SQ, Crow VL, Delabre ML, Lubbers M, Bennett M, Norris G (2005) Esterases of lactic acid bacteria and cheese flavour: milk fat hydrolysis, alcoholysis and esterification. Int Dairy J 15:711–718

    Article  CAS  Google Scholar 

  49. Falentin H, Henaff N, Le Bivic P, Deutsch SM, Parayre S, Richoux R, Sohier D, Thierry A, Lortal S, Postollec F (2012) Reverse transcription quantitative PCR revealed persistency of thermophilic lactic acid bacteria metabolic activity until the end of the ripening of Emmental cheese. Food Microbiol 29:132–140

    Article  CAS  Google Scholar 

  50. Todorov SD, Franco BDG de M (2010) Lactobacillus plantarum: characterization of the species and application in food production. Food Rev Int 26:205–229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PNE scholarship program provided by the Algerian Ministry of Higher Education and Scientific Research in UMR1253 INRA—Rennes, France.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryma Merabti or Florence Valence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merabti, R., Bekhouche, F., Chuat, V. et al. A large diversity of lactic acid bacteria species is involved in the fermentation of wheat used for the manufacture of lemzeiet . Eur Food Res Technol 241, 137–149 (2015). https://doi.org/10.1007/s00217-015-2442-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2442-x

Keywords

Navigation