Skip to main content
Log in

Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldor IS, Krawitz DC, Forrest W, Chen C, Nishihara JC, Joly JC, Champion KM (2005) Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl Environ Microbiol 71(4):1717–1728

    Article  PubMed  CAS  Google Scholar 

  2. Arechaga I, Miroux B, Runswick MJ, Walker JE (2003) Over-expression of Escherichia coli F1F(o)-ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Lett 547(1–3):97–100

    Article  PubMed  CAS  Google Scholar 

  3. Baik JY, Lee MS, An SR, Yoon SK, Joo EJ, Kim YH, Park HW, Lee GM (2006) Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng 93(2):361–371

    Article  PubMed  CAS  Google Scholar 

  4. Balbas P, Gosset G (2001) Chromosomal editing in Escherichia coli—vectors for DNA integration and excision. Mol Biotechnol 19(1):1–12

    Article  PubMed  CAS  Google Scholar 

  5. Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29(5):677–684

    Article  PubMed  CAS  Google Scholar 

  6. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotech 10(5):411–421

    Article  PubMed  CAS  Google Scholar 

  7. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408

    Article  PubMed  CAS  Google Scholar 

  8. Becker J, Hackl M, Rupp O, Jakobi T, Schneider J, Szczepanowski R, Bekel T, Borth N, Goesmann A, Grillari J, Kaltschmidt C, Noll T, Puhler A, Tauch A, Brinkrolf K (2011) Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing. J Biotechnol 156(3):227–235

    Article  PubMed  CAS  Google Scholar 

  9. Bibila TA, Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 11(1):1–13

    Article  PubMed  CAS  Google Scholar 

  10. Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14(9):757–766

    Article  PubMed  CAS  Google Scholar 

  11. Boehm T, Pirie-Shepherd S, Trinh LB, Shiloach J, Folkman J (1999) Disruption of the KEX1 gene in Pichia pastoris allows expression of full-length murine and human endostatin. Yeast 15(7):563–572

    Article  PubMed  CAS  Google Scholar 

  12. Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Valenzuela P, Barr PJ (1984) Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 81(15):4642–4646

    Article  PubMed  CAS  Google Scholar 

  13. Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277(1–2):141–155

    Article  PubMed  CAS  Google Scholar 

  14. Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25(9):425–432

    Article  PubMed  CAS  Google Scholar 

  15. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68(3):283–291

    Article  PubMed  CAS  Google Scholar 

  16. Cacciatore JJ, Chasin LA, Leonard EF (2010) Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the DHFR-based CHO cell selection system. Biotechnol Adv 28(6):673–681

    Article  PubMed  CAS  Google Scholar 

  17. Carinhas N, Oliveira R, Alves PM, Carrondo MJ, Teixeira AP (2012) Systems biotechnology of animal cells: the road to prediction. Trends Biotechnol 30(7):377–385

    Article  PubMed  CAS  Google Scholar 

  18. Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13(4):329–332

    Article  PubMed  Google Scholar 

  19. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66

    Article  PubMed  CAS  Google Scholar 

  20. Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 100(9):5022–5027

    Article  PubMed  CAS  Google Scholar 

  21. Choi JH, Keum KC, Lee SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 61(3):876–885

    Article  CAS  Google Scholar 

  22. Choi JH, Lee SJ, Lee SJ, Lee SY (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl Environ Microbiol 69(8):4737–4742

    Article  PubMed  CAS  Google Scholar 

  23. Chou CP (2007) Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biot 76(3):521–532

    Article  CAS  Google Scholar 

  24. Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74(4):288–294

    Article  PubMed  CAS  Google Scholar 

  25. Dieci G, Bottarelli L, Ballabeni A, Ottonello S (2000) tRNA-assisted overproduction of eukaryotic ribosomal proteins. Protein Expr Purif 18(3):346–354

    Article  PubMed  CAS  Google Scholar 

  26. Dietmair S, Hodson MP, Quek LE, Timmins NE, Gray P, Nielsen LK (2012) A multi-omics analysis of recombinant protein production in hek293 cells. PLoS ONE 7(8):e43394

    Article  PubMed  CAS  Google Scholar 

  27. Dietmair S, Nielsen LK, Timmins NE (2012) Mammalian cells as biopharmaceutical production hosts in the age of omics. Biotechnol J 7(1):75–89

    Article  PubMed  CAS  Google Scholar 

  28. Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86(1):41–49

    Article  PubMed  CAS  Google Scholar 

  29. Eiden-Plach A, Zagorc T, Heintel T, Carius Y, Breinig F, Schmitt MJ (2004) Viral preprotoxin signal sequence allows efficient secretion of green fluorescent protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Appl Environ Microbiol 70(2):961–966

    Article  PubMed  CAS  Google Scholar 

  30. Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63(8):3205–3210

    PubMed  CAS  Google Scholar 

  31. Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861

    Article  PubMed  CAS  Google Scholar 

  32. Figueroa B Jr, Sauerwald TM, Oyler GA, Hardwick JM, Betenbaugh MJ (2003) A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metab Eng 5(4):230–245

    Article  PubMed  CAS  Google Scholar 

  33. Franchini AG, Egli T (2006) Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152(Pt 7):2111–2127

    Article  PubMed  CAS  Google Scholar 

  34. Fukushige S, Sauer B (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA 89(17):7905–7909

    Article  PubMed  CAS  Google Scholar 

  35. Funke M, Buchenauer A, Mokwa W, Kluge S, Hein L, Muller C, Kensy F, Buchs J (2010) Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Fact 9:86

    Article  PubMed  CAS  Google Scholar 

  36. Fussenegger M, Schlatter S, Datwyler D, Mazur X, Bailey JE (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol 16(5):468–472

    Article  PubMed  CAS  Google Scholar 

  37. Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73(20):6499–6507

    Article  PubMed  CAS  Google Scholar 

  38. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22(11):1409–1414

    Article  PubMed  CAS  Google Scholar 

  39. Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF (2009) Sensors in disposable bioreactors status and trends. Adv Biochem Eng Biotechnol 115:145–169

    CAS  Google Scholar 

  40. Goncalves GA, Bower DM, Prazeres DM, Monteiro GA, Prather KL (2012) Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing. Biotechnol J 7(2):251–261

    Article  PubMed  CAS  Google Scholar 

  41. Gorfien S, Paul B, Walowitz J, Keem R, Biddle W, Jayme D (2000) Growth of NS0 cells in protein-free, chemically defined medium. Biotechnol Prog 16(5):682–687

    Article  PubMed  CAS  Google Scholar 

  42. Gottschalk U, Brorson K, Shukla AA (2012) The need for innovation in biomanufacturing. Nat Biotechnol 30(6):489–492

    Article  PubMed  CAS  Google Scholar 

  43. Griffin TJ, Seth G, Xie H, Bandhakavi S, Hu WS (2007) Advancing mammalian cell culture engineering using genome-scale technologies. Trends Biotechnol 25(9):401–408

    Article  PubMed  CAS  Google Scholar 

  44. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–4130

    PubMed  CAS  Google Scholar 

  45. Haddadin FT, Harcum SW (2005) Transcriptome profiles for high-cell-density recombinant and wild-type Escherichia coli. Biotechnol Bioeng 90(2):127–153

    Article  PubMed  CAS  Google Scholar 

  46. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301(5637):1244–1246

    Article  PubMed  CAS  Google Scholar 

  47. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313(5792):1441–1443

    Article  PubMed  CAS  Google Scholar 

  48. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18(5):387–392

    Article  PubMed  CAS  Google Scholar 

  49. Han MJ, Jeong KJ, Yoo JS, Lee SY (2003) Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl Environ Microbiol 69(10):5772–5781

    Article  PubMed  CAS  Google Scholar 

  50. Hanania EG, Fieck A, Stevens J, Bodzin LJ, Palsson BO, Koller MR (2005) Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnol Bioeng 91(7):872–876

    Article  PubMed  CAS  Google Scholar 

  51. Harmsen MM, Bruyne MI, Raue HA, Maat J (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46(4):365–370

    Article  PubMed  CAS  Google Scholar 

  52. Hartl FU, Hayer-Hartl M (2002) Protein folding—molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  PubMed  CAS  Google Scholar 

  53. Holmes P, Al-Rubeai M (1999) Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230(1–2):141–147

    Article  PubMed  CAS  Google Scholar 

  54. Hong E, Davidson AR, Kaiser CA (1996) A pathway for targeting soluble misfolded proteins to the yeast vacuole. J Cell Biol 135(3):623–633

    Article  PubMed  CAS  Google Scholar 

  55. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949

    Article  PubMed  CAS  Google Scholar 

  56. Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12(5):491–510

    Article  PubMed  CAS  Google Scholar 

  57. Idicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci 14(3):582–592

    Article  PubMed  CAS  Google Scholar 

  58. Idicula-Thomas S, Kulkarni AJ, Jayaraman VK, Balaji PV (2006) A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli. Bioinformatics 22(3):278–284

    Article  PubMed  CAS  Google Scholar 

  59. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417

    Article  PubMed  CAS  Google Scholar 

  60. Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y, Takegawa K (2010) Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85(3):667–677

    Article  PubMed  CAS  Google Scholar 

  61. Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biot 67(3):289–298

    Article  CAS  Google Scholar 

  62. Jeong D, Kim TS, Lee JW, Kim KT, Kim HJ, Kim IH, Kim IY (2001) Blocking of acidosis-mediated apoptosis by a reduction of lactate dehydrogenase activity through antisense mRNA expression. Biochem Biophys Res Commun 289(5):1141–1149

    Article  PubMed  CAS  Google Scholar 

  63. Jeong KJ, Choi JH, Yoo WM, Keum KC, Yoo NC, Lee SY, Sung MH (2004) Constitutive production of human leptin by fed-batch culture of recombinant rpoS-Escherichia coli. Protein Expr Purif 36(1):150–156

    Article  PubMed  CAS  Google Scholar 

  64. Jeong KJ, Lee SY (1999) High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification. Appl Environ Microbiol 65(7):3027–3032

    PubMed  CAS  Google Scholar 

  65. Jeong KJ, Lee SY (2003) Enhanced production of recombinant proteins in Escherichia coli by filamentation suppression. Appl Environ Microbiol 69(2):1295–1298

    Article  PubMed  CAS  Google Scholar 

  66. Jones EW (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol 194:428–453

    Article  PubMed  CAS  Google Scholar 

  67. Jonson L, Rehfeld JF, Johnsen AH (2004) Enhanced peptide secretion by gene disruption of CYM1, a novel protease in Saccharomyces cerevisiae. Eur J Biochem 271(23–24):4788–4797

    Article  PubMed  CAS  Google Scholar 

  68. Kamionka M (2011) Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12(2):268–274

    Article  PubMed  CAS  Google Scholar 

  69. Kanjou N, Nagao A, Ohmiya Y, Ohgiya S (2007) Yeast mutant with efficient secretion identified by a novel secretory reporter, Cluc. Biochem Biophys Res Commun 358(2):429–434

    Article  PubMed  CAS  Google Scholar 

  70. Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27(6):879–894

    Article  PubMed  CAS  Google Scholar 

  71. Kennard ML (2011) Engineered mammalian chromosomes in cellular protein production: future prospects. Methods Mol Biol 738:217–238

    Article  PubMed  CAS  Google Scholar 

  72. Kim NS, Lee GM (2002) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng 78(2):217–228

    Article  PubMed  CAS  Google Scholar 

  73. Kingsman SM, Kingsman AJ, Dobson MJ, Mellor J, Roberts NA (1985) Heterologous gene expression in Saccharomyces cerevisiae. Biotechnol Genet Eng Rev 3:377–416

    PubMed  CAS  Google Scholar 

  74. Kito M, Itami S, Fukano Y, Yamana K, Shibui T (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl Microbiol Biotechnol 60(4):442–448

    Article  PubMed  CAS  Google Scholar 

  75. Knappskog S, Ravneberg H, Gjerdrum C, Trosse C, Stern B, Pryme IF (2007) The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol 128(4):705–715

    Article  PubMed  CAS  Google Scholar 

  76. Korke R, Gatti Mde L, Lau AL, Lim JW, Seow TK, Chung MC, Hu WS (2004) Large scale gene expression profiling of metabolic shift of mammalian cells in culture. J Biotechnol 107(1):1–17

    Article  PubMed  CAS  Google Scholar 

  77. Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24(3):137–142

    Article  PubMed  CAS  Google Scholar 

  78. Kwaks TH, Sewalt RG, van Blokland R, Siersma TJ, Kasiem M, Kelder A, Otte AP (2005) Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells. J Biotechnol 115(1):35–46

    Article  PubMed  CAS  Google Scholar 

  79. Laursen BS, Steffensen SAD, Hedegaard J, Moreno JMP, Mortensen KK, Sperling-Petersen HU (2002) Structural requirements of the mRNA for intracistronic translation initiation of the enterobacterial infB gene. Genes Cells 7(9):901–910

    Article  PubMed  CAS  Google Scholar 

  80. Lee MS, Kim KW, Kim YH, Lee GM (2003) Proteome analysis of antibody-expressing CHO cells in response to hyperosmotic pressure. Biotechnol Prog 19(6):1734–1741

    Article  PubMed  CAS  Google Scholar 

  81. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105

    Article  PubMed  CAS  Google Scholar 

  82. Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raue HA, Planta RJ (1989) High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene 79(2):199–206

    Article  PubMed  CAS  Google Scholar 

  83. Luan CH, Qiu SH, Finley JB, Carson M, Gray RJ, Huang WY, Johnson D, Tsao J, Reboul J, Vaglio P, Hill DE, Vidal M, Delucas LJ, Luo M (2004) High-throughput expression of C. elegans proteins. Genome Res 14(10B):2102–2110

    Article  PubMed  CAS  Google Scholar 

  84. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270

    Article  PubMed  CAS  Google Scholar 

  85. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512

    PubMed  CAS  Google Scholar 

  86. Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15(2):163–176

    Article  PubMed  CAS  Google Scholar 

  87. Mastrangelo AJ, Hardwick JM, Zou S, Betenbaugh MJ (2000) Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol Bioeng 67(5):555–564

    Article  PubMed  CAS  Google Scholar 

  88. Mattanovich D, Borth N (2006) Applications of cell sorting in biotechnology. Microb Cell Fact 5:12

    Article  PubMed  CAS  Google Scholar 

  89. Meng YG, Liang J, Wong WL, Chisholm V (2000) Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242(1–2):201–207

    Article  PubMed  CAS  Google Scholar 

  90. Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Biotechnol Bioeng 67(4):435–450

    Article  PubMed  CAS  Google Scholar 

  91. Micheletti M, Lye GJ (2006) Microscale bioprocess optimisation. Curr Opin Biotechnol 17(6):611–618

    Article  PubMed  CAS  Google Scholar 

  92. Nakanishi-Shindo Y, Nakayama K, Tanaka A, Toda Y, Jigami Y (1993) Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J Biol Chem 268(35):26338–26345

    PubMed  CAS  Google Scholar 

  93. Nandakumar MP, Cheung A, Marten MR (2006) Proteomic analysis of extracellular proteins from Escherichia coli W3110. J Proteome Res 5(5):1155–1161

    Article  PubMed  CAS  Google Scholar 

  94. Natale P, Bruser T, Driessen AJM (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. BBA-Biomembranes 1778(9):1735–1756

    Article  PubMed  CAS  Google Scholar 

  95. Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31(11):1661–1670

    Article  PubMed  CAS  Google Scholar 

  96. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, Escherichia coli. Appl Environ Microbiol 64(5):1694–1699

    PubMed  CAS  Google Scholar 

  97. Noguchi A, Mukuria CJ, Suzuki E, Naiki M (1995) Immunogenicity of N-glycolylneuraminic acid-containing carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. J Biochem 117(1):59–62

    PubMed  CAS  Google Scholar 

  98. Opar A (2011) ‘Pharmers’ hope for first plant drug harvest. Nat Rev Drug Discov 10(2):81–82

    Article  PubMed  CAS  Google Scholar 

  99. Palermo DP, DeGraaf ME, Marotti KR, Rehberg E, Post LE (1991) Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. J Biotechnol 19(1):35–47

    Article  PubMed  CAS  Google Scholar 

  100. Parente D, Raucci G, D’Alatri L, d’Estais G, Novelli S, Pacilli A, Saccinto MP, Mele A, De Santis R (1998) Overproduction of soluble, extracellular cytotoxin alpha-sarcin in Escherichia coli. Mol Biotechnol 9(2):99–106

    Article  PubMed  CAS  Google Scholar 

  101. Payne T, Finnis C, Evans LR, Mead DJ, Avery SV, Archer DB, Sleep D (2008) Modulation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant human albumin production results in increased production of multiple heterologous proteins. Appl Environ Microbiol 74(24):7759–7766

    Article  PubMed  CAS  Google Scholar 

  102. Posfai G, Plunkett G 3rd, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046

    Article  PubMed  CAS  Google Scholar 

  103. Rinas U, Bailey JE (1992) Protein Compositional Analysis of Inclusion-Bodies Produced in Recombinant Escherichia coli. Appl Microbiol Biot 37(5):609–614

    Article  CAS  Google Scholar 

  104. Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21–48

    Article  PubMed  CAS  Google Scholar 

  105. Robbens J, Raeymaekers A, Steidler L, Fiers W, Remaut E (1995) Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release, and purification. Protein Expr Purif 6(4):481–486

    Article  PubMed  CAS  Google Scholar 

  106. Robinson AS, Hines V, Wittrup KD (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology 12(4):381–384

    Article  PubMed  CAS  Google Scholar 

  107. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8(6):423–488

    Article  PubMed  CAS  Google Scholar 

  108. Ruohonen L, Toikkanen J, Tieaho V, Outola M, Soderlund H, Keranen S (1997) Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery. Yeast 13(4):337–351

    Article  PubMed  CAS  Google Scholar 

  109. Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69(4):440–449

    Article  PubMed  CAS  Google Scholar 

  110. Schapper D, Alam MN, Szita N, Eliasson Lantz A, Gernaey KV (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395(3):679–695

    Article  PubMed  CAS  Google Scholar 

  111. Seth G, Philp RJ, Denoya CD, McGrath K, Stutzman-Engwall KJ, Yap M, Hu WS (2005) Large-scale gene expression analysis of cholesterol dependence in NS0 cells. Biotechnol Bioeng 90(5):552–567

    Article  PubMed  CAS  Google Scholar 

  112. Sharma SS, Blattner FR, Harcum SW (2007) Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 9(2):133–141

    Article  PubMed  CAS  Google Scholar 

  113. Shusta EV, Raines RT, Pluckthun A, Wittrup KD (1998) Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16(8):773–777

    Article  PubMed  CAS  Google Scholar 

  114. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310

    Article  PubMed  CAS  Google Scholar 

  115. Smith JD, Tang BC, Robinson AS (2004) Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnol Bioeng 85(3):340–350

    Article  PubMed  CAS  Google Scholar 

  116. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128

    Article  PubMed  CAS  Google Scholar 

  117. St John TP, Davis RW (1981) The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol Biol 152(2):285–315

    Article  PubMed  CAS  Google Scholar 

  118. Stewart EJ, Aslund F, Beckwith J (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17(19):5543–5550

    Article  PubMed  CAS  Google Scholar 

  119. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  PubMed  CAS  Google Scholar 

  120. Taylor G, Hoare M, Gray DR, Marston FAO (1986) Size and density of protein inclusion-bodies. Bio-Technology 4(6):553–557

    Article  CAS  Google Scholar 

  121. Treier K, Hansen S, Richter C, Diederich P, Hubbuch J, Lester P (2012) High-throughput methods for miniaturization and automation of monoclonal antibody purification processes. Biotechnol Prog 28(3):723–732

    Article  PubMed  CAS  Google Scholar 

  122. van der Heide M, Hollenberg CP, van der Klei IJ, Veenhuis M (2002) Overproduction of BiP negatively affects the secretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha. Appl Microbiol Biotechnol 58(4):487–494

    Article  PubMed  CAS  Google Scholar 

  123. Van Dyk DD, Misztal DR, Wilkins MR, Mackintosh JA, Poljak A, Varnai JC, Teber E, Walsh BJ, Gray PP (2003) Identification of cellular changes associated with increased production of human growth hormone in a recombinant Chinese hamster ovary cell line. Proteomics 3(2):147–156

    Article  PubMed  Google Scholar 

  124. Vijayendran C, Flaschel E (2010) Impact of profiling technologies in the understanding of recombinant protein production. Adv Biochem Eng Biotechnol 121:45–70

    PubMed  CAS  Google Scholar 

  125. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793

    Article  PubMed  CAS  Google Scholar 

  126. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28(9):917–924

    Article  PubMed  CAS  Google Scholar 

  127. Walsh G (2012) New biopharmaceuticals. Biopharm Int 25(6):34–36

    Google Scholar 

  128. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    Article  PubMed  CAS  Google Scholar 

  129. Wang L (2009) Towards revealing the structure of bacterial inclusion bodies. Prion 3(3):139–145

    Article  PubMed  Google Scholar 

  130. Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R (2008) Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol 6(8):e195

    Article  PubMed  CAS  Google Scholar 

  131. Weaver JC, McGrath P, Adams S (1997) Gel microdrop technology for rapid isolation of rare and high producer cells. Nat Med 3(5):583–585

    Article  PubMed  CAS  Google Scholar 

  132. Wegner GH (1990) Emerging applications of the methylotrophic yeasts. FEMS Microbiol Rev 7(3–4):279–283

    PubMed  CAS  Google Scholar 

  133. Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121

    Article  PubMed  CAS  Google Scholar 

  134. Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C (2009) Design parameters to control synthetic gene expression in Escherichia coli. Plos One 4(9):e7002

    Google Scholar 

  135. Wewetzer K, Seilheimer B (1995) Establishment of a single-step hybridoma cloning protocol using an automated cell transfer system: comparison with limiting dilution. J Immunol Methods 179(1):71–76

    Article  PubMed  CAS  Google Scholar 

  136. Wilkinson DL, Harrison RG (1991) Predicting the solubility of recombinant proteins in Escherichia coli. Bio-Technol 9(5):443–448

    Article  CAS  Google Scholar 

  137. Wu SC (2009) RNA interference technology to improve recombinant protein production in Chinese hamster ovary cells. Biotechnol Adv 27(4):417–422

    Article  PubMed  CAS  Google Scholar 

  138. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    Article  PubMed  CAS  Google Scholar 

  139. Wurm FM, Gwinn KA, Kingston RE (1986) Inducible overproduction of the mouse c-myc protein in mammalian cells. Proc Natl Acad Sci USA 83(15):5414–5418

    Article  PubMed  CAS  Google Scholar 

  140. Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741

    Article  PubMed  CAS  Google Scholar 

  141. Yoon SK, Kim SH, Lee GM (2003) Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells. Biotechnol Prog 19(4):1383–1386

    Article  PubMed  CAS  Google Scholar 

  142. Zhang B, Chang A, Kjeldsen TB, Arvan P (2001) Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 153(6):1187–1198

    Article  PubMed  CAS  Google Scholar 

  143. Zhang G, Brokx S, Weiner JH (2006) Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat Biotechnol 24(1):100–104

    Article  PubMed  CAS  Google Scholar 

  144. Zhou H, Liu ZG, Sun ZW, Huang Y, Yu WY (2010) Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. J Biotechnol 147(2):122–129

    Article  PubMed  CAS  Google Scholar 

  145. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Slovenian Research Agency Grant No. P4-0127. We are grateful to Prof. Roger Pain for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Berlec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlec, A., Štrukelj, B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40, 257–274 (2013). https://doi.org/10.1007/s10295-013-1235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1235-0

Keywords

Navigation