Skip to main content
Log in

Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A novel phytase producing thermophilic strain of Bacillus laevolacticus insensitive to inorganic phosphate was isolated from the rhizosphere soil of leguminous plant methi (Medicago falacata). The culture conditions for production of phytase by B. laevolacticus under shake flask culture were optimized to obtain high levels of phytase (2.957 ± 0.002 U/ml). The partially purified phytase from B. laevolacticus strain was optimally active at 70 °C and between pH 7.0 and pH 8.0. The enzyme exhibited thermostability with ∼80% activity at 70 °C and pH 8.0 for up to 3 h in the presence/absence of 5 mM CaCl2. The phytase from B. laevolacticus showed high specificity for phytate salts of Ca+ > Na+. The enzyme showed an apparent K m 0.526 mM and V max 12.3 μmole/min/mg of activity against sodium phytate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Angelis MD, Gallo G, Carbo MR, McSweeney LH, Faccia M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87(3):259–270

    Article  CAS  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  3. Chadha BS, Gulati H, Minhas M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microb Biotechnol 20:105–109

    Article  CAS  Google Scholar 

  4. Chelius MK, Wodzinski RJ (1994) Strain improvement of Aspergillus niger for phytase production. Appl Microb Biotechnol 4:79–83

    Google Scholar 

  5. Chen JC (1998) Novel screening method for extracellular phytase-producing microorganisms. Biotechnol Tech 12 (10):759–761

    Google Scholar 

  6. Cheryan M (1980) Phytic acid interactions in food systems. CRC Crit Rev Food Sci Nutr 13:297–335

    CAS  Google Scholar 

  7. Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ (2003) Purification and characterization of a phytase from Pseudomonas MOK1. Curr Microbiol 47:290–294

    Article  CAS  Google Scholar 

  8. Cho J, Lee C, Kang S, Lee J, Lee H, Bok J, Woo J, Moon Y, Choi Y (2005) Molecular cloning of a phytase gene (PhyM) from Pseudomonas syringae MOK1. Curr Microbiol 51:11–15

    Article  CAS  Google Scholar 

  9. Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292

    Article  CAS  Google Scholar 

  10. Ebune A, Al-Asheh S, Duvnjak Z (1995) Effect of phosphate, surfactant and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid state fermentation. Bioresour Technol 54:241–247

    Article  CAS  Google Scholar 

  11. Fredrikson M, Andlid T, Haikara A, Sandberg AS (2002) Phytate degradation by microorganisms in synthetic media and pea flour. J Appl Microbiol 93:197–204

    Article  CAS  Google Scholar 

  12. Greiner R, Haller E, Konietzny U, Jany KD (1997) Purification and characterization of phytase from Klebsiella terrigena. Arch Biochem Biophys 34:201–206

    Article  Google Scholar 

  13. Greiner R, Konietzny U, Jany D (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  CAS  Google Scholar 

  14. Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnology production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    Article  CAS  Google Scholar 

  15. Harland BF, Morris ER (1983) Phytate: a good or a bad food component. Nutr Res 15:733–754

    Article  Google Scholar 

  16. Howson SG, Davis RP (1983) Production of phytate hydrolyzing enzyme by some fungi. Enzyme Microb Technol 5:377–382

    Article  CAS  Google Scholar 

  17. Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    CAS  Google Scholar 

  18. Jareonkitmongkol S, Ohya M, Watanabe R, Takagi H, Nakamori S (1997) Partial purification from a soil isolates bacterium, Klebsiella oxytoca MO-3. J Ferment Bioeng 83:393–394

    Article  CAS  Google Scholar 

  19. Jiang G, Krishnan AH, Kim YW, Wacek TJ, Krishnan HB (2001) A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol 183:2595–2604

    Article  CAS  Google Scholar 

  20. Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation characterization molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    CAS  Google Scholar 

  21. Kerovuo J, Rouvinen J, Hatzack F (2000) The metal ion dependence of Bacillus subtilis phytase. Biochem Biophys Res Commun 268:365–369

    Article  CAS  Google Scholar 

  22. Kim YO, Kim HK, Bae KS, Yu JH, Oh TK (1998) Purification and properties of thermostable phytase from Bacillus sp. DSII. Enzyme Microb Technol 22:2–7

    Article  CAS  Google Scholar 

  23. Lambrechts C, Boze H, Moulin G, Galzy P (1992) Utilization of phytate by some yeasts. Biotechnol Lett 14:61–66

    Article  CAS  Google Scholar 

  24. Lan GQ, Abdullah N, Jalaludin S, Ho YW (2002) Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacteria species from the rumen of cattle. Appl Microbiol 93:668–674

    Article  CAS  Google Scholar 

  25. Maenz DD, Engele-schaan CM, Newkirk RW, Classen HL (1999) The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim Feed Sci Technol 81:177–192

    Article  CAS  Google Scholar 

  26. Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, Van Loon APGM (1997) The phytase subfamily of histidine acid phosphatase: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252

    Article  CAS  Google Scholar 

  27. Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificity of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372

    Article  CAS  Google Scholar 

  28. Power VK, Jagannathan V (1982) Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108

    Google Scholar 

  29. Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize Inositol phosphates. Can J Microbiol 43:509–516

    Article  CAS  Google Scholar 

  30. Sarvas M (1995) Gene expression in recombinant Bacillus. In: Smith A (eds) Gene expression in recombinant microorganism. Marcel Dekker Inc., NY

    Google Scholar 

  31. Shieh TR, Ware JH (1968) Survey of microorganisms for the production of extracellular phytase. Appl Microbiol 16:1348–1351

    CAS  Google Scholar 

  32. Shimizu M (1992) Purification and characterization of phytase from Bacillus subtilis (natto) N—77. Biosci Biotechnol Biochem 56:1266–1269

    Article  CAS  Google Scholar 

  33. Simon O, Igbasan F (2002) In vitro properties of phytase from various microbial origins. Int J Food Sci Technol 37:813–822

    Article  CAS  Google Scholar 

  34. Sreeramulu G, Srinivasa DS, Nand K, Joseph R (1996) Lactobacillus amylovorus as a phytase producer in submerged culture. Lett Appl Microbiol 23:385–388

    CAS  Google Scholar 

  35. Sunitha K, Lee JK, Oh TK (1999) Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Eng 21:477–481

    CAS  Google Scholar 

  36. Wang X, Upatham S, Panbangred W, Isarangkul D, Summpunn P, Wiyakrutta, Meevootisom V (2004) Purifictaion, characterization, gene cloning and sequence analysis of a phytase from Klebsiella pnuemoniae subsp. Pneumoniae XY-5. Sci Asia 30:383–390

    Article  CAS  Google Scholar 

  37. Yoon SJ, Choi Y J, Min HK, Cho KK, Kim JW, Lee SC, Jung YH (1996) Isolation and identification of phytase producing bacterium. Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme Microb Technol 18:449–454

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support by CSIR to BSC is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Chadha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulati, H.K., Chadha, B.S. & Saini, H.S. Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J Ind Microbiol Biotechnol 34, 91–98 (2007). https://doi.org/10.1007/s10295-006-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0171-7

Keywords

Navigation