Skip to main content

Advertisement

Log in

Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0–30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson’s correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Randall Linder C, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future direction. Bioscience 50:979–995

    Article  Google Scholar 

  • Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50:29–37

    Article  CAS  Google Scholar 

  • Arora VK, Boer GJ (2005) A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biol 11:39–59

    Article  Google Scholar 

  • Belnap J (2011) Biological phosphorus cycling in dryland regions. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Germany, pp 371–406

    Chapter  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–392

    Article  Google Scholar 

  • Boyce CK (2005) The evolutionary history of roots and LEAVES. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Netherlands, pp 479–500

    Chapter  Google Scholar 

  • Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant. Neth. J Agric Sci 10:361–376

    Google Scholar 

  • Brouwer R (1983) Functional equilibrium: sense or nonsense. Neth J Agric Sci 31:335–348

    Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  PubMed  Google Scholar 

  • Carnicer J, Sardans J, Stefanescu C, Ubach A, Bartrons M, Asensio D, Peñuelas J (2015) Global biodiversity, stoichiometry and ecosystem function responses to human-induced C–N–P imbalances. J Plant Physiol 172:82–91

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57

    Article  Google Scholar 

  • Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plant actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34

    Article  PubMed  CAS  Google Scholar 

  • Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005) Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86:12–19

    Article  Google Scholar 

  • de Martonne E (1926) Traité De Géographie Physique. 3 tomes. Paris

  • Ehleringer JR, Field CB (1993) Scaling physiological processes, leaf to globe. Academic Press, American, pp 388

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  PubMed  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: mechanism, scaling and ecological response to global change. New Phytol 186:593–608

    Article  PubMed  CAS  Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning across seed plant. Science 295:1517–1520

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Fortunel C, Fine PVA, Baraloto C (2012) Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct Ecol 26:1153–1161

    Article  Google Scholar 

  • Geng Y, Wu Y, He JS (2011) Relationship between leaf phosphorus concentration and soil phosphorus availability across Inner Mongolia grassland. Chin J Plant Ecol 35:1–8

    Article  CAS  Google Scholar 

  • Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  PubMed  CAS  Google Scholar 

  • Hartley A, Barger N, Belnap J, Okin G (2007) Dryland ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Germany, pp 271–307

    Chapter  Google Scholar 

  • He MZ, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–931

    Article  PubMed  CAS  Google Scholar 

  • He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006) Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 149:115–122

    Article  PubMed  Google Scholar 

  • He MZ, Dijkstra FA, Zhang K, Tan HJ, Zhao Y, Li XR (2016a) Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant Soil 398:339–350

    Article  CAS  Google Scholar 

  • He MZ, Song X, Tian FP, Zhang K, Zhang ZS, Chen N, Li XR (2016b) Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert. Sci Rep 6:20124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutchings MJ, de Kroon H (1994) Foraging in plant: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  PubMed  CAS  Google Scholar 

  • Kerkhoff AJ, Fagan WF, Elser JJ, Enquist B (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168:E103–E122

    Article  PubMed  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants. Academic Press, American

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York, NY

    Book  Google Scholar 

  • Li A, Guo DL, Wang ZQ, Liu HY (2010) Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Funct Ecol 24:224–232

    Article  Google Scholar 

  • Liu C, Wang XP, Wu X, Dai S, He JS, Yin WL (2013) Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China. J Plant Ecol 6:220–231

    Article  Google Scholar 

  • McConnaughay KDM, Coleman JS (1999) Biomass allocation in plant: ontogeny or optimality? A test along three resource gradients. Ecology 80:2581–2593

    Article  Google Scholar 

  • Medeiros JCC, Coelho FF, Teixeira E (2016) Biomass allocation and nutrients balance related to the concentrations of Nitrogen and Phosphorus in Salvinia auriculata (Salviniaceae). Braz J Biol. 10.1590/1519-6984.21114

    Article  PubMed  Google Scholar 

  • Minden V, Kleyer M (2014) Internal and external regulation of plant organ stoichiometry. Plant Biol 16:897–907

    Article  PubMed  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin A (2006) Critical analysis of root:shoot ratios in terrestrial biomes. Global Change Biol 12:84–96

    Article  Google Scholar 

  • Moorcroft PR (2003) Recent advances in ecosystem-atmosphere interactions: an ecological perspective. P Roy Soc Lond B Bio 270:1215–1227

    Article  CAS  Google Scholar 

  • Niklas KJ (2006) Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Ann Bot 97:155–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ordoñez JC, Van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  PubMed  CAS  Google Scholar 

  • Pugnaire FI, Haase P, Puigdefabregas J (1996) Facilitation between higher plant species in a semiarid environment. Ecology 77:1420–1426

    Article  Google Scholar 

  • Reich PB (2005) Global biogeography of plant chemistry: filling in the blanks. New Phytol 168:263–266

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. P Natl Acad Sci USA 101:11001–11006

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2013) Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood. Global Ecol Biogeogr 22:494–507

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328

    Article  Google Scholar 

  • Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, American

  • Su YZ, Wang XF, Yang R, Lee J (2010) Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. J Environ Manage 91:2109–2116

    Article  PubMed  CAS  Google Scholar 

  • Tabari H, Talaee PH, Nadoushani SSM, Willems P, Marchetto A (2014) A survey of temperature and precipitation based aridity indices in Iran. Quatern Int 345:158–166

    Article  Google Scholar 

  • Tjoelker MG, Reich PB, Oleksyn J (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ 22:767–778

    Article  Google Scholar 

  • Tornquist CG, Hons FM, Feagley SE, Haggar J (1999) Agroforestry system effects on soil characteristics of the Sarapiquí region of Costa Rica. Agr Ecosyst Environ 73:19–28

    Article  Google Scholar 

  • Wang M, Su YZ, Yang R, Yang X (2013) Allocation patterns of above- and below-ground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China. Chinese J. Plant Ecol 37:209–219 (Chinese)

    Google Scholar 

  • Wang M, Su YZ, Yang X (2014) Spatial distribution of soil organic carbon and its influencing factors in desert grasslands of the Hexi Corridor, Northwest China. PLoS One 9:e94652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  PubMed  CAS  Google Scholar 

  • Weih M, Karlsson PS (2001) Growth response of Mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytol 150:147–155

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wilson JB (1988) A review of evidence on the control of shoot:root ratio, in relation to models. Ann Bot 61:433–449

    Article  Google Scholar 

  • Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003) Temperature and the chemical composition of poikilothermic organisms. Funct Ecol 17:237–245

    Article  Google Scholar 

  • Yan ZB, Li P, Chen YH, Han WX, Fang JY (2016) Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Sci Rep 6:20099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang ZJ, Midmore DJ (2005) Modelling plant resource allocation and growth partitioning in response to environmental heterogeneity. Ecol Model 181:59–77

    Article  Google Scholar 

  • Yang YH, Fang JY, Ma WH, Guo DL, Mohammat A (2010) Large-scale pattern of biomass partitioning across China’s grassland. Global Ecol Biogeogr 19:268–277

    Article  Google Scholar 

  • Yang X, Tang ZY, Ji CJ, Liu HY, Ma WH, Mohhamot A, Shi ZY, Sun W, Wang T, Wang XP, Wu X, Yu SL, Yue M, Zheng CY (2014) Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China. Sci Rep 4:5448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang ZS, Li XR, Liu LC, Jia RL, Zhang JG, Wang T (2009) Distribution, biomass, and dynamics of roots in a revegetated stand of Caragana Korshinskii in the Tengger Desert, northwest China. J Plant Res 122:109–119

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91425302, 41401337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongZhong Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1634 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Su, Y. & Yang, R. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China. J Plant Res 130, 699–708 (2017). https://doi.org/10.1007/s10265-017-0940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-0940-6

Keywords

Navigation