Skip to main content

Advertisement

Log in

Clinicopathological and prognostic significance of chemokine receptor CXCR4 in patients with bone and soft tissue sarcoma: a meta-analysis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The prognostic significance of CXC chemokine receptor 4 (CXCR4) in patients with bone and soft tissue sarcomas remains controversial. To investigate the impact of its expression on survival and clinicopathological features, we performed a meta-analysis. Comprehensive literature searches were conducted in PubMed, Web of Science, Embase and Cochrane Library for relevant studies. In total, 12 studies with 997 sarcoma patients were included. CXCR4 expression was found to be significantly associated with poor overall survival (HR 2.37, 95 % CI 1.86–3.01; P < 0.001). Further, when the analysis was stratified by histological subtypes (bony sarcoma including osteosarcoma and Ewing sarcoma and soft tissue sarcoma including synovial sarcoma and rhabdomyosarcoma), statistical analysis method (multivariate analysis and univariate analysis) and CXCR4 measuring method (IHC or RT-PCR), the significant correlation to poor overall survival was also observed except for that in Ewing sarcoma and RT-PCR groups. As for clinicopathological features, CXCR4 expression was significantly associated with higher rate of metastasis (OR 6.97, 95 % CI 2.28–21.31; P = 0.001) and higher tumor stage (OR 7.55, 95 % CI 1.25–45.47; P = 0.027), but not associated with gender, age and tumor site. In conclusion, CXCR4 expression may be an effective predictive factor of poor prognosis and clinicopathological features for bone and soft tissue sarcomas. Further studies are needed to validate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Skubitz KM, D’Adamo DR. Sarcoma. Mayo Clin Proc. 2007;82(11):1409–32.

    Article  CAS  PubMed  Google Scholar 

  2. Hwang JS, Mehta AD, Yoon RS, et al. From amputation to limb salvage reconstruction: evolution and role of the endoprosthesis in musculoskeletal oncology. J Orthop Traumatol. 2014;15(2):81–6.

    Article  PubMed  Google Scholar 

  3. Nakamura T, Matsumine A, Yamakado K, et al. Lung radiofrequency ablation in patients with pulmonary metastases from musculoskeletal sarcomas. Cancer. 2009;115(16):3774–81.

    Article  PubMed  Google Scholar 

  4. Luetke A, Meyers PA, Lewis I, et al. Osteosarcoma treatment—Where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.

    Article  PubMed  Google Scholar 

  5. Wang N, He YL, Pang LJ, et al. Down-regulated E-cadherin expression is associated with poor five-year overall survival in bone and soft tissue sarcoma: results of a meta-analysis. PLoS One. 2015;10(3):e0121448. doi:10.1371/journal.pone.0121448.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107(5):1761–7.

    Article  CAS  PubMed  Google Scholar 

  7. Kryczek I, Wei S, Keller E, et al. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol. 2007;292(3):C987–95.

    Article  CAS  PubMed  Google Scholar 

  8. de Oliveira KB, Guembarovski RL, Guembarovski AM, et al. CXCL12, CXCR4 and IFNgamma genes expression: implications for proinflammatory microenvironment of breast cancer. Clin Exp Med. 2013;13(3):211–9.

    Article  CAS  PubMed  Google Scholar 

  9. Zlotnik A. New insights on the role of CXCR4 in cancer metastasis. J Pathol. 2008;215(3):211–3.

    Article  CAS  PubMed  Google Scholar 

  10. Furusato B, Mohamed A, Uhlen M, et al. CXCR4 and cancer. Pathol Int. 2010;60(7):497–505.

    Article  CAS  PubMed  Google Scholar 

  11. Liu CF, Liu SY, Min XY, et al. The prognostic value of CXCR4 in ovarian cancer: a meta-analysis. PLoS One. 2014;9(3):e92629. doi:10.1371/journal.pone.0092629.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu TP, Shen H, Liu LX, Shu YQ. The impact of chemokine receptor CXCR4 on breast cancer prognosis: a meta-analysis. Cancer Epidemiol. 2013;37(5):725–31.

    Article  CAS  PubMed  Google Scholar 

  13. Tang B, Tang F, Li Y, et al. Clinicopathological significance of CXCR4 expression in renal cell carcinoma: a meta-analysis. Ann Surg Oncol. 2015;22(3):1026–31.

    Article  PubMed  Google Scholar 

  14. Ren Z, Liang S, Yang J, et al. Coexpression of CXCR4 and MMP9 predicts lung metastasis and poor prognosis in resected osteosarcoma. Tumour Biol. 2015;. doi:10.1007/s13277-015-4352-8.

    PubMed Central  Google Scholar 

  15. Palmerini E, Benassi MS, Quattrini I, et al. Prognostic and predictive role of CXCR4, IGF-1R and Ezrin expression in localized synovial sarcoma: Is chemotaxis important to tumor response? Orphanet J Rare Dis. 2015;10:6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu Y, Guan GF, Chen J, et al. Aberrant CXCR4 and β-catenin expression in osteosarcoma correlates with patient survival. Oncol Lett. 2015;10(4):2123–9.

    PubMed  PubMed Central  Google Scholar 

  17. Guan G, Zhang Y, Lu Y, et al. The HIF-1alpha/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells. Cancer Lett. 2015;357(1):254–64.

    Article  CAS  PubMed  Google Scholar 

  18. Miyoshi K, Kohashi K, Fushimi F, et al. Close correlation between CXCR4 and VEGF expression and frequent CXCR7 expression in rhabdomyosarcoma. Hum Pathol. 2014;45(9):1900–9.

    Article  CAS  PubMed  Google Scholar 

  19. Guo M, Cai C, Zhao G, et al. Hypoxia promotes migration and induces CXCR4 expression via HIF-1alpha activation in human osteosarcoma. PLoS One. 2014;9(3):e90518. doi:10.1371/journal.pone.0090518.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Berghuis D, Schilham MW, Santos SJ, et al. The CXCR4-CXCL12 axis in Ewing sarcoma: promotion of tumor growth rather than metastatic disease. Clin Sarcoma Res. 2012;2(1):24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baumhoer D, Smida J, Zillmer S, et al. Strong expression of CXCL12 is associated with a favorable outcome in osteosarcoma. Mod Pathol. 2012;25(4):522–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lin F, Zheng SE, Shen Z, et al. Relationships between levels of CXCR4 and VEGF and blood-borne metastasis and survival in patients with osteosarcoma. Med Oncol. 2011;28(2):649–53.

    Article  CAS  PubMed  Google Scholar 

  23. Oda Y, Tateishi N, Matono H, et al. Chemokine receptor CXCR4 expression is correlated with VEGF expression and poor survival in soft-tissue sarcoma. Int J Cancer. 2009;124(8):1852–9.

    Article  CAS  PubMed  Google Scholar 

  24. Oda Y, Yamamoto H, Tamiya S, et al. CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol. 2006;19(5):738–45.

    Article  CAS  PubMed  Google Scholar 

  25. Laverdiere C, Hoang BH, Yang R, et al. Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res. 2005;11(7):2561–7.

    Article  CAS  PubMed  Google Scholar 

  26. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhuang Y, Wei M. Impact of vascular endothelial growth factor expression on overall survival in patients with osteosarcoma: a meta-analysis. Tumour Biol. 2014;35(3):1745–9.

    Article  CAS  PubMed  Google Scholar 

  28. Jupiter DC. Causal diagrams and multivariate analysis III: confound it! J Foot Ankle Surg. 2015;54(1):145–7.

    Article  PubMed  Google Scholar 

  29. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  30. Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing’s sarcoma: National Cancer Data Base Report. Clin Orthop Relat Res. 2007;459:40–7.

    Article  PubMed  Google Scholar 

  31. Morgan SS, Cranmer LD. Systematic therapy for unresectable or metastatic soft-tissue sarcomas: past, present, and future. Curr Oncol Rep. 2011;13(4):331–49.

    Article  CAS  PubMed  Google Scholar 

  32. Han G, Wang Y, Bi W, et al. Effects of vascular endothelial growth factor expression on pathological characteristics and prognosis of osteosarcoma. Clin Exp Med. 2015. doi:10.1007/s10238-015-0382-1.

    Google Scholar 

  33. Baptista AM, Camargo AF, Filippi RZ, et al. Correlation between the expression of vegf and survival in osteosarcoma. Acta Ortop Bras. 2014;22(5):250–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jung ST, Moon ES, Seo HY, et al. Expression and significance of TGF-beta isoform and VEGF in osteosarcoma. Orthopedics. 2005;28(8):755–60.

    PubMed  Google Scholar 

  35. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872–7.

    Article  CAS  PubMed  Google Scholar 

  36. Kucia M, Jankowski K, Reca R, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol. 2004;35(3):233–45.

    Article  CAS  PubMed  Google Scholar 

  37. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  38. Duda DG, Kozin SV, Kirkpatrick ND, et al. CXCL12 (SDF1α)-CXCR4/CXCR7 pathway inhibition: An emerging sensitizer for anticancer therapies? Clin Cancer Res. 2011;17(8):2074–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    Article  CAS  PubMed  Google Scholar 

  40. Liotta LA. An attractive force in metastasis. Nature. 2001;410(6824):24–5.

    Article  CAS  PubMed  Google Scholar 

  41. Kojima Y, Acar A, Eaton EN, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 2010;107(46):20009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  43. Xia S, Fang L, He J, et al. Genetic association between p73 G4C14-A4T14 polymorphism and risk of squamous cell carcinoma. Clin Exp Med. 2014;. doi:10.1007/s10238-014-0331-4.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the staff in the Department of Orthopedics and Evidence-Based Medicine Center, West China Hospital, Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Qi Tu.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YJ., Dai, YL., Zhang, WB. et al. Clinicopathological and prognostic significance of chemokine receptor CXCR4 in patients with bone and soft tissue sarcoma: a meta-analysis. Clin Exp Med 17, 59–69 (2017). https://doi.org/10.1007/s10238-015-0405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0405-y

Keywords

Navigation