Skip to main content

Advertisement

Log in

Apelin beyond kidney failure and hyponatremia: a useful biomarker for cancer disease progression evaluation

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Apelin regulates angiogenesis, stimulating endothelial cell proliferation and migration. It is upregulated during tumor angiogenesis, and its overexpression was reported to increase tumor growth. Furthermore, apelin controls vasopressin release and body fluid homeostasis. The aim of this study was to examine the correlations between apelin expression and clinical outcomes in oncologic patients, such as cancer disease progression and patient’s survival. Apelin levels were evaluated in a cohort of 95 patients affected by different varieties of cancer. Partial remission and stable disease were assigned to the ‘no progression’ group, comparing it with the progressor group. Patients were followed up for 2 years. Receiver operating characteristics analysis was employed for identifying the progression of the oncologic disease and Kaplan–Meier curves assessed the survival. Adjusted risk estimates for progression endpoint were calculated using Cox proportional hazard regression analysis. Oncologic patients had higher apelin levels compared with healthy subjects, and apelin was closely related to the stages of the disease. In the hyponatremia group, apelin values were significantly higher than patients with eunatremia. After the follow-up of 24 months, 41 patients (43 %) reached the endpoint. Progressor subjects presented significantly increased apelin values at baseline compared with non-progressor. Univariate followed by multivariate Cox proportional hazard regression analysis showed that apelin predicted cancer progression independently of other potential confounders. In patients with cancer, apelin closely reflects the stage of the disease and represents a strong and independent risk marker for cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maguire JJ, Kleinz MJ, Pitkin SL et al (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54:598–604

    Article  CAS  PubMed  Google Scholar 

  2. Galanth C, Hus-Citharel A, Li B et al (2012) Apelin in the control of body fluid homeostasis and cardiovascular functions. Curr Pharm Des 18:789–798

    Article  CAS  PubMed  Google Scholar 

  3. Masri B, Morin N, Cornu M et al (2004) Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18:1909–1911

    CAS  PubMed  Google Scholar 

  4. Kasai A, Shintani N, Oda M et al (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325:395–400

    Article  CAS  PubMed  Google Scholar 

  5. Kalin RE, Kretz MP, Meyer AM et al (2007) Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol 305:599–614

    Article  PubMed  Google Scholar 

  6. Ronkainen VP, Ronkainen JJ, Hanninen SL et al (2007) Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 21:1821–1830

    Article  CAS  PubMed  Google Scholar 

  7. O’Carroll AM, Lolait SJ (2003) Regulation of rat APJ receptor messenger ribonucleic acid expression in magnocellular neurons of the paraventricular and supraopric nuclei by osmotic stimuli. J Neuroendocrinol 15:661–666

    Article  PubMed  Google Scholar 

  8. Taheri S, Murphy K, Cohen M et al (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291:1208–1212

    Article  CAS  PubMed  Google Scholar 

  9. Llorens-Cortes C, Moos F (2012) Apelin and vasopressin: two work better than one. J Neuroendocrinol 4:1085–1086

    Article  Google Scholar 

  10. Lacquaniti A (2012) Hyponatremia in hospitalized patients: an underestimated problem. G Ital Nefrol 29:261

    PubMed  Google Scholar 

  11. Jeppesen AN, Jensen HK, Donskov F et al (2010) Hyponatremia as a prognostic and predictive factor in metastatic renal cell carcinoma. Br J Cancer 102:867–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lameire N, Van Biesen W, Vanholder R (2010) Electrolyte disturbances and acute kidney injury in patients with cancer. Semin Nephrol 30:534–547

    Article  CAS  PubMed  Google Scholar 

  13. Castillo JJ, Vincent M, Justice E (2012) Diagnosis and management of hyponatremia in cancer patients. Oncologist 17:756–765

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thompson C, Hoorn EJ (2012) Hyponatraemia: an overview of frequency, clinical presentation and complications. Best Pract Res Clin Endocrinol Metab 26:S1–S6

    Article  PubMed  Google Scholar 

  15. Edge SB, Byrd DR, Compton CC et al (2010) American Joint Committee on Cancer staging manual, 7th edn. Springer, New York, NY

    Google Scholar 

  16. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  17. Hermes A, Waschki B, Reck M (2012) Hyponatremia as prognostic factor in small cell lung cancer—a retrospective single institution analysis. Respir Med 106:900–904

    Article  PubMed  Google Scholar 

  18. Doshi SM, Shah P, Lei X et al (2012) Hyponatremia in hospitalized cancer patients and its impact on clinical outcomes. Am J Kidney Dis 59:222–228

    Article  CAS  PubMed  Google Scholar 

  19. Gandhi L, Johnson BE (2006) Paraneoplastic syndromes associated with small cell lung cancer. J Natl Compr Cancer Netw 4:631–638

    Google Scholar 

  20. Berta J, Kenessey I, Dobos J et al (2010) Apelin expression in human non-small cell lung cancer: role in angiogenesis and prognosis. J Thorac Oncol 5:1120–1129

    Article  PubMed  Google Scholar 

  21. Heo K, Kim YH, Sung HJ et al (2012) Hypoxia-induced up-regulation of apelin is associated with a poor prognosis in oral squamous cell carcinoma patients. Oral Oncol 48:500–506

    Article  CAS  PubMed  Google Scholar 

  22. Eyries M, Siegfried G, Ciumas M et al (2008) Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res 103:432–440

    Article  CAS  PubMed  Google Scholar 

  23. Kidoya H, Kunii N, Naito H et al (2012) The apelin/APJ system induces maturation of the tumor vasculature and improves the efficiency of immune therapy. Oncogene 31:3254–3264

    Article  CAS  PubMed  Google Scholar 

  24. Sorli SC, van den Berghe L, Masri B et al (2006) Therapeutic potential of interfering with apelin signalling. Drug Discov Today 11:1100–1106

    Article  CAS  PubMed  Google Scholar 

  25. Sorli SC, Le Gonidec S, Knibiehler B et al (2007) Apelin is a potent activator of tumour neoangiogenesis. Oncogene 26:7692–7699

    Article  CAS  PubMed  Google Scholar 

  26. Iwanaga Y, Kihara Y, Takenaka H et al (2006) Down-regulation of cardiac apelin system in hypertrophied and failing hearts: possible role of angiotensin II angiotensin type 1 receptor system. J Mol Cell Cardiol 41:798–806

    Article  CAS  PubMed  Google Scholar 

  27. Kazemi-Bajestani SM, Patel VB, Wang W et al (2012) Targeting the ACE2 and apelin pathways are novel therapies for heart failure: opportunities and challenges. Cardiol Res Pract 2012:823193

    PubMed  PubMed Central  Google Scholar 

  28. Feng Y, Ni L, Wan H et al (2011) Over expression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncol Rep 26:1157–1164

    CAS  PubMed  Google Scholar 

  29. Yasumatsu R, Nakashima T, Masuda M et al (2004) Effects of the angiotensin-I converting enzyme inhibitor perindopril on tumor growth and angiogenesis in head and neck squamous cell carcinoma cells. J Cancer Res Clin Oncol 130:567–573

    Article  CAS  PubMed  Google Scholar 

  30. Larrinaga G, Pérez I, Sanz B et al (2010) Angiotensin-converting enzymes (ACE and ACE2) are downregulated in renal tumors. Regul Pept 165:218–223

    Article  CAS  PubMed  Google Scholar 

  31. Feng Y, Wan H, Liu J et al (2010) The angiotensin-converting enzyme 2 in tumor growth and tumor-associated angiogenesis in non-small cell lung cancer. Oncol Rep 23:941–948

    CAS  PubMed  Google Scholar 

  32. Lv SY, Yang YJ, Qin YJ et al (2012) Central apelin-13 inhibits food intake via the CRF receptor in mice. Peptides 33:132–138

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lacquaniti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacquaniti, A., Altavilla, G., Picone, A. et al. Apelin beyond kidney failure and hyponatremia: a useful biomarker for cancer disease progression evaluation. Clin Exp Med 15, 97–105 (2015). https://doi.org/10.1007/s10238-014-0272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0272-y

Keywords

Navigation