Skip to main content

Advertisement

Log in

Effects of the angiotensin-I converting enzyme inhibitor perindopril on tumor growth and angiogenesis in head and neck squamous cell carcinoma cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Recently, it has been reported that angiotensin-I converting enzyme (ACE) inhibitors have anticancer activity. In particular, the ACE inhibitor, perindopril, significantly inhibits tumor growth and angiogenesis in hepatocellular carcinoma cells along with suppression of the VEGF level. However, the mechanisms of suppression of the VEGF level are still unclear, and there are no previous reports on this subject related to head and neck squamous cell carcinoma (HNSCC). In some previous studies, angiotensin II, which is produced from angiotensin I by ACE, directly stimulates VEGF expression.

Methods

In the present study, we focused upon angiotensin II, and investigated the effect of perindopril on VEGF expression, angiogenesis, and tumor development of HNSCC with in vitro and in vivo studies.

Results

In the in vitro cell proliferation assays, there was no significant difference between the perindopril-treated group and the control group. However, the perindoprilat-treated group showed a significant reduction in mRNA expression of VEGF and inhibited the induction activity of the VEGF promoter in comparison to the control group. Perindoprilat treatment also significantly suppressed angiotensin II production in vitro. In the in vivo studies, perindopril had a significant inhibitory effect on tumor growth, and reduced blood vessel formation surrounding the tumors.

Conclusions

Our findings suggest that perindopril has no direct cytotoxicity against tumor cells, but has a potential to inhibit tumor growth due to suppression of VEGF-induced angiogenesis in vivo. Angiotensin II might have an important role in carcinogenesis, and the antiangiogenic activity of perindopril is at least partly mediated by angiotensin II inhibition. The ACE inhibitor perindopril has clinical potential as a useful antitumor agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A,B
Fig. 2
Fig. 3
Fig. 4
Fig. 5A–C

Similar content being viewed by others

References

  • Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23:755–761

    Article  CAS  PubMed  Google Scholar 

  • Burris JF (1995) The expanding role of angiotensin converting enzyme inhibitors in the management of hypertension. J Clin Pharmacol 35:337–342

    CAS  PubMed  Google Scholar 

  • Chen L, Re RN, Prakash O, Mondal D (1991) Angiotensin-converting enzyme inhibition reduces neuroblastoma cell growth rate. Proc Soc Exp Biol Med 196:280–283

    CAS  PubMed  Google Scholar 

  • Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 68:450–456

    CAS  PubMed  Google Scholar 

  • Denhart BC, Guidi AJ, Tognazzi K, Dvorak HF, Brown LF (1997) Vascular permeability factor/vascular endothelial growth factor and its receptors in oral and laryngeal squamous cell carcinoma and dysplasia. Lab Invest 77:659–664

    CAS  PubMed  Google Scholar 

  • Fernandez LA, Twickler J, Mead A (1985) Neovascularization produced by angiotensin II. J Lab Clin Med 105:141–145

    CAS  PubMed  Google Scholar 

  • Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    CAS  PubMed  Google Scholar 

  • Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M (2002) Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun 294:441–447

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Yusuf S (1995) Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA 273:1450–1456

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95:189–197

    CAS  PubMed  Google Scholar 

  • Kuiper RA, Schellens JH, Blijham GH, Beijnen JH, Voest EE (1998) Clinical research on antiangiogenic therapy. Pharmacol Res 37:1–16

    Article  CAS  PubMed  Google Scholar 

  • Lau K, Bicknell R (1999) Antiangiogenic gene therapy. Gene Ther 6:1793–1795

    Article  CAS  PubMed  Google Scholar 

  • Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, MacKinnon PL, Meredith PA, Murray LS, Reid JL, Robertson JW (1998) Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 352:179–184

    Article  CAS  PubMed  Google Scholar 

  • Masuda M, Toh S, Koike K, Kuratomi Y, Suzui M, Deguchi A, Komiyama S, Weinstein IB (2002). The roles of JNK1 and Stat3 in the response of head and neck cancer cell lines to combined treatment with all-trans-retinoic acid and 5-fluorouracil. Jpn J Cancer Res 93:329–339

    CAS  PubMed  Google Scholar 

  • Matsumoto G, Ohmi Y, Shindo J (2001) Angiostatin gene therapy inhibits the growth of murine squamous cell carcinoma in vivo. Oral Oncol 37:369–378

    Article  CAS  PubMed  Google Scholar 

  • Minchenko A, Salceda S, Bauer T, Caro J (1994) Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol Biol Res 40:35–39

    CAS  PubMed  Google Scholar 

  • Moriyama M, Kumagai S, Kawashiri S, Kojima K, Kakihara K, Yamamoto E (1997) Immunohistochemical study of tumour angiogenesis in oral squamous cell carcinoma. Oral Oncol 33:369–374

    CAS  PubMed  Google Scholar 

  • Mustonen T, Alitalo K (1995) Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 129:895–898

    Article  CAS  PubMed  Google Scholar 

  • Noguchi R,Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Yamazaki M, Mitoro A, Tsujinoue H, Imazu H, Masaki T, Fukui H (2003) Combination of interferon-beta and the angiotensin-converting enzyme inhibitor, perindopril, attenuates murine hepatocellular carcinoma development and angiogenesis. Clin Cancer Res 9:6038–6045

    CAS  PubMed  Google Scholar 

  • Page EL, Robitaille GA, Pouyssegur J, Richard DE (2002) Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 277:48403–48409

    Article  CAS  PubMed  Google Scholar 

  • Prontera C, Mariani B, Rossi C, Poggi A, Rotilio D (1999) Inhibition of gelatinase A (MMP-2) by batimastat and captopril reduces tumor growth and lung metastases in mice bearing Lewis lung carcinoma. Int J Cancer 81:761–766

    Article  CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  • Shemirani B, Crowe DL (2000) Head and neck squamous cell carcinoma lines produce biologically active angiogenic factors. Oral Oncol 36:61–66

    Article  CAS  PubMed  Google Scholar 

  • Shemirani B, Crowe DL (2002) Hypoxic induction of HIF-1alpha and VEGF expression in head and neck squamous cell carcinoma lines is mediated by stress activated protein kinases. Oral Oncol 38:251–257

    Article  CAS  PubMed  Google Scholar 

  • Shpitzer T, Chaimoff M, Gal R, Stern Y, Feinmesser R, Segal K (1996) Tumor angiogenesis as a prognostic factor in early oral tongue cancer. Arch Otolaryngol Head Neck Surg 122:865–868

    CAS  PubMed  Google Scholar 

  • Volpert OV, Ward WF, Lingen MW, Chesler L, Solt DB, Johnson MD, Molteni A, Polverini PJ, Bouck NP (1996) Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98:671–679

    CAS  PubMed  Google Scholar 

  • Yoshiji H, Kuriyama S, Kawata M, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Fukui H (2001) The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor. Clin Cancer Res 7:1073–1078

    CAS  PubMed  Google Scholar 

  • Yoshiji H, Kuriyama S, Fukui H (2002) Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biol 23:348–356

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torahiko Nakashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasumatsu, R., Nakashima, T., Masuda, M. et al. Effects of the angiotensin-I converting enzyme inhibitor perindopril on tumor growth and angiogenesis in head and neck squamous cell carcinoma cells. J Cancer Res Clin Oncol 130, 567–573 (2004). https://doi.org/10.1007/s00432-004-0582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-004-0582-7

Keywords

Navigation