Skip to main content
Log in

Development of a computational model for macroscopic predictions of device-induced thrombosis

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

While cardiovascular device-induced thrombosis is associated with negative patient outcomes, the convoluted nature of the processes resulting in a thrombus makes the full thrombotic network too computationally expensive to simulate in the complex geometries and flow fields associated with devices. A macroscopic, continuum computational model is developed based on a simplified network, which includes terms for platelet activation (chemical and mechanical) and thrombus deposition and growth in regions of low wall shear stress (WSS). Laminar simulations are performed in a two-dimensional asymmetric sudden expansion geometry and compared with in vitro thrombus size data collected using whole bovine blood. Additionally, the predictive power of the model is tested in a flow cell containing a series of symmetric sudden expansions and contractions. Thrombi form in the low WSS area downstream of the asymmetric expansion and grow into the nearby recirculation region, and thrombus height and length largely remain within 95 % confidence intervals calculated from the in vitro data for 30 min of blood flow. After 30 min, predicted thrombus height and length are 0.94 and 4.32 (normalized by the 2.5 mm step height). Importantly, the model also correctly predicts locations of thrombus deposition observed in the in vitro flow cell of expansions and contractions. As the simulation results, which rely on a greatly reduced model of the thrombotic network, are still able to capture the macroscopic behavior of the full network, the model shows promise for timely predictions of device-induced thrombosis toward optimizing and expediting the device development process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({\varvec{u}}\) :

Velocity

p :

Pressure

t :

Time

\(\nu \) :

Kinematic viscosity

\(\rho \) :

Density

F :

Modified Brinkman function

\(\varepsilon \) :

Aggregation intensity

\(\varepsilon _\mathrm{t}\) :

Aggregation intensity threshold

k :

Thrombus permeability

Q :

Arbitrary scalar quantity

D :

Diffusivity

R :

Sources and sinks

\(\phi _\mathrm{n}\) :

Non-activated platelet concentration

\(\phi _\mathrm{a}\) :

Activated platelet concentration

\(D_\mathrm{n}\) :

Diffusion coefficient for non-activated platelets

\(D_\mathrm{a}\) :

Diffusion coefficient for activated platelets

\(A_\mathrm{C}\) :

Chemical platelet activation rate

ADP:

Adenosine diphosphate (ADP) concentration

\(\mathrm{ADP}_\mathrm{t}\) :

ADP threshold for chemical activation

\(t_\mathrm{ADP}\) :

Characteristic time for chemical activation

\(A_\mathrm{M}\) :

Mechanical platelet activation rate

\(\tau \) :

Scalar shear stress

\(\bar{{\bar{\varvec{\sigma }}}}\) :

Viscous stress tensor

\(\phi _\mathrm{f}\) :

Activated platelet fraction

C :

Power law coefficient

\(\alpha \) :

Power law coefficient

\(\beta \) :

Power law coefficient

\(D_\mathrm{ADP}\) :

Diffusion coefficient for ADP

\(R_\mathrm{ADP}\) :

Amount of ADP in a platelet

\(\alpha _\varepsilon \) :

Thrombus volumetric growth rate

\(\tau _\mathrm{w}\) :

Wall shear stress (WSS)

\(P_\mathrm{TSP}\) :

Weighting function for thrombus deposition /growth

\(\tau _\mathrm{low,wall}\) :

Low WSS threshold for thrombus deposition

\(\tau _\mathrm{high,wall}\) :

High WSS threshold for thrombus deposition

\(\tau _\mathrm{low,thrombus}\) :

Low WSS threshold for thrombus growth

\(\tau _\mathrm{high,thrombus}\) :

High WSS threshold for thrombus growth

\(\beta _\varepsilon \) :

Thrombus breakdown function

B :

Thrombus breakdown rate

\(\tau _\mathrm{breakdown,wall}\) :

WSS threshold for thrombus breakdown at a wall

\(\tau _\mathrm{breakdown,thrombus}\) :

WSS threshold for thrombus breakdown at a thrombus surface

U :

Average inlet velocity

h :

Step height

\(\phi _{\mathrm{a},i}\) :

Initial (background) concentration of activated platelets

\(\phi _{\mathrm{n},i}\) :

Initial concentration of non-activated platelets

\(t_{\mathrm{G}}\) :

Characteristic thrombus growth time

H :

Thrombus height

L :

Thrombus length

References

  • Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC (1997) Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg 25(5):916–926. doi:10.1016/S0741-5214(97)70223-4

    Article  Google Scholar 

  • Armaly BF, Durst F, Pereira JCF, Schonung B (1983) Experimental and theoretical investigation of backward-facing step flow. J Fluid Mech 127:473–496. doi:10.1017/S0022112083002839

    Article  Google Scholar 

  • Basmadjian D (1989) Embolization: critical thrombus height, shear rates, and pulsatility. Patency of blood vessels. J Biomed Mater Res 23(11):1315–1326. doi:10.1002/jbm.820231108

    Article  Google Scholar 

  • Bludszuweit C (1994) A theoretical approach to the prediction of haemolysis in centrifugal blood pumps. Dissertation, University of Strathclyde

  • Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK (1996) Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng 118:280–286. doi:10.1115/1.2796008

    Article  Google Scholar 

  • Cito S (2013) Review of macroscopic thrombus modeling methods. Thromb Res 131:116–124. doi:10.1016/j.thromres.2012.11.020

    Article  Google Scholar 

  • Fogelson AL (1992) Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J Appl Math 52(4):1089–1110. doi:10.1137/0152064

    Article  MathSciNet  MATH  Google Scholar 

  • Fogelson AL, Guy RD (2008) Immersed-boundary-type models of intravascular platelet aggregation. Comput Methods Appl Mech Eng 197:2087–2104. doi:10.1016/j.cma.2007.06.030

    Article  MathSciNet  MATH  Google Scholar 

  • Folie BJ, McIntire LV (1989) Mathematical analysis of mural thrombogenesis: concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys J 56(6):1121–1141. doi:10.1016/S0006-3495(89)82760-2

    Article  Google Scholar 

  • Frojmovic MM, Mooney RF, Wong T (1994) Dynamics of platelet glycoprotein IIb–IIIa receptor expression and fibrinogen binding. I. Quantal activation of platelet subpopulations varies with adenosine diphosphate concentration. Biophys J 67:2060–2068. doi:10.1016/S0006-3495(94)80689-7

    Article  Google Scholar 

  • Gear AR (1982) Rapid reactions of platelets studied by a quenched-flow approach: aggregation kinetics. J Lab Clin Med 100(6):866–886. doi:10.1111/j.1365-2141.1984.tb03969.x

    Google Scholar 

  • Goldsmith HL, Turitto VT (1986) Rehological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thrombo Haemost 55(3):415–435 ISSN: 0340-6245

  • Goodman PD, Barlow ET, Crapo PM, Mohammad SF, Solen KA (2005) Computational model of device-induced thrombosis and thromboembolism. Ann Biomed Eng 33(6):780–797. doi:10.1007/s10439-005-2951-z

    Article  Google Scholar 

  • Gottschall JL, Rzad L, Aster RH (1986) Studies of the minimum temperature at which human platelets can be stored with full maintenance of viability. Transfusion 26(5):460–462. doi:10.1046/j.1537-2995.1986.26587020126.x

    Article  Google Scholar 

  • Guj G, Stella F (1988) Numerical solutions of high-Re recirculating flows in vorticity-velocity form. Int J Numer Methods Fluids 8(4):405–416. doi:10.1002/fld.1650080404

    Article  MATH  Google Scholar 

  • Hansen KB, Arzani A, Shadden SC (2015) Mechanical platelet activation in abdominal aortic aneurysms. J Biomech Eng 137:041005–1–8. doi:10.1115/1.4029580

    Article  Google Scholar 

  • Holme S, Heaton A (1995) In vitro platelet ageing at 22 \(^{\circ }\)C is reduced compared to in vivo ageing at 37 \(^{\circ }\)C. Br J Haematol 91(1):212–218. doi:10.1111/j.1365-2141.1995.tb05272.x

    Article  Google Scholar 

  • Holmsen H, Weiss HJ (1979) Secretable storage pools in platelets. Ann Rev Med 30:119–134. doi:10.1146/annurev.me.30.020179.001003

    Article  Google Scholar 

  • Hubbell JA, McIntire LV (1986a) Platelet active concentration profiles near growing thrombi. Biophys J 50:937–945. doi:10.1016/S0006-3495(86)83535-4

  • Hubbell JA, McIntire LV (1986b) Visualization and analysis of mural thrombogenesis on collagen, polyurethane and nylon. Biomaterials 7:354–363. doi:10.1016/0142-9612(86)90006-2

    Article  Google Scholar 

  • Karino T, Goldsmith HL (1979) Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc Res 17:238–262. doi:10.1016/S0026-2862(79)80002-3

    Article  Google Scholar 

  • Kennedy SD, Igarashi Y, Kickler TS (1997) Measurement of in vitro P-selectin expression by flow cytometry. Am J Clin Pathol 107:99–104 ISSN: 0002-9173

  • Leiderman K, Fogelson AL (2011) Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math Med Biol 28:47–84. doi:10.1093/imammb/dqq005

    Article  MathSciNet  MATH  Google Scholar 

  • Leiderman K, Fogelson AL (2014) An overview of mathematical modeling of thrombus formation under flow. Thromb Res 133:S12–S14. doi:10.1016/j.thromres.2014.03.005

    Article  Google Scholar 

  • Medvitz RM (2008) Development and validation of a computational fluid dynamics methodology for pulsatile blood pump design and prediction of thrombus potential. Ph.D. Dissertation, The Pennsylvania State University

  • Navitsky MA, Taylor JO, Smith AB, Slattery MJ, Deutsch S, Siedlecki CA, Manning KB (2014) Platelet adhesion to polyurethane urea under pulsatile flow conditions. Artif Organs 38(12):1046–1053. doi:10.1111/aor.12296

    Article  Google Scholar 

  • Roache PJ (1994) Perspective—a method for uniform reporting of grid refinement studies. ASME J Fluids Eng 116(3):405–413. doi:10.1115/1.2910291

    Article  Google Scholar 

  • Samra S (2011) Numerical implementation of a continuum platelet aggregation model. M.S. Thesis, The Pennsylvania State University

  • Soares JS, Sheriff J, Bluestein D (2013) A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories. Biomech Model Mechanobiol 12:1127–1141. doi:10.1007/s10237-013-0469-0

    Article  Google Scholar 

  • Sohn JL (1988) Evaluation of FIDAP on some classical laminar and turbulent benchmarks. Int J Numer Methods Fluids 8(12):1469–1490. doi:10.1002/fld.1650081202

    Article  Google Scholar 

  • Soloviev MV, Okazaki Y, Harasaki H (1999) Whole blood platelet aggregation in humans and animals: a comparative study. J Surg Res 82(2):180–187. doi:10.1006/jsre.1998.5543

  • Sorensen EN, Burgreen GW, Wagner WR, Antaki JF (1999a) Computational simulation of platelet deposition and activation: I. Model development and properties. Ann Biomed Eng 27:436–438. doi:10.1114/1.200

  • Sorensen EN, Burgreen GW, Wagner WR, Antaki JF (1999b) Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann Biomed Eng 27:449–458. doi:10.1114/1.201

    Article  Google Scholar 

  • Tamagawa M, Kaneda H, Hiramoto M, Nagahama S (2009) Simulation of thrombus formation in shear flows using lattice Boltzmann method. Artif Organs 33(8):604–610. doi:10.1111/j.1525-1594.2009.00782.x

    Article  Google Scholar 

  • Taylor JO, Witmer KP, Neuberger T, Craven BA, Meyer RS, Deutsch S, Manning KB (2014) In vitro quantification of time dependent thrombus size using magnetic resonance imaging and computational simulations of thrombus surface shear stresses. J Biomech Eng 136:071012. doi:10.1115/1.4027613

    Article  Google Scholar 

  • Topper SR, Navitsky MA, Medvitz RB, Paterson EG, Siedlecki CA, Slattery MJ, Deutsch S, Rosenberg G, Manning KB (2014) The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs. Cardiovasc Eng Technol 5(1):54–69. doi:10.1007/s13239-014-0174-x

    Article  Google Scholar 

  • Wang W, King MR (2012) Multiscale modeling of platelet adhesion and thrombus growth. Ann Biomed Eng 40(11):2345–2354. doi:10.1007/s10439-012-0558-8

    Article  Google Scholar 

  • Welsh JD, Stalker TJ, Voronov R, Muthard RW, Tomaiuolo M, Diamond SL, Brass LF (2014) A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124(11):1808–1815. doi:10.1182/blood-2014-01-550335

    Article  Google Scholar 

  • Williams PT, Baker AJ (1997) Numerical simulations of laminar flow over a 3D backward-facing step. Int J Numer Methods Fluids 24(11):1159–1183. doi:10.1002/(SICI)1097-0363(19970615)24:11<1159::AID-FLD534>3.0.CO;2-R

  • Wufsus AR, Macera NE, Neeves KB (2013) The hydraulic permeability of blood clots as a function of fibrin and platelet density. Biophys J 104(8):1812–1823. doi:10.1016/j.bpj.2013.02.055

    Article  Google Scholar 

  • Xu Z, Chen N, Kamocka MM, Rosen ED, Alber M (2008) A multiscale model of thrombus development. J R Soc Interface 5:705–722. doi:10.1098/rsif.2007.1202

    Article  Google Scholar 

  • Xu Z, Chen N, Shadden SC, Marsden JE, Kamocka MM, Rosen ED, Alber M (2009) Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5:769–779. doi:10.1039/B812429A

    Article  Google Scholar 

  • Xu Z, Lioi J, Mu J, Kamocka MM, Liu X, Chen DZ, Rosen ED, Alber M (2010) A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys J 98:1723–1732. doi:10.1016/j.bpj.2009.12.4331

    Article  Google Scholar 

  • Xu Z, Kamocka M, Alber M, Rosen ED (2011) Computational approaches to studying thrombus development. Arterioscler Thromb Vasc Biol 31(3):500–505. doi:10.1161/ATVBAHA.110.213397

    Article  Google Scholar 

Download references

Acknowledgments

A Walker Graduate Assistantship from the Applied Research Laboratory at the Pennsylvania State University and a Penn State Grace Woodward Foundation grant supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, J.O., Meyer, R.S., Deutsch, S. et al. Development of a computational model for macroscopic predictions of device-induced thrombosis. Biomech Model Mechanobiol 15, 1713–1731 (2016). https://doi.org/10.1007/s10237-016-0793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0793-2

Keywords

Navigation