Skip to main content

Advertisement

Log in

Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The type-I bicuspid aortic valve (BAV), which differs from the normal tricuspid aortic valve (TAV) most commonly by left-right coronary cusp fusion, is frequently associated with secondary aortopathies. While BAV aortic dilation has been linked to a genetic predisposition, hemodynamics has emerged as a potential alternate etiology. However, the link between BAV hemodynamics and aortic medial degeneration has not been established. The objective of this study was to compare the regional wall shear stresses (WSS) in a TAV and BAV ascending aorta (AA) and to isolate ex vivo their respective impact on aortic wall remodeling. The WSS environments generated in the convex region of a TAV and BAV AA were predicted through fluid–structure interaction (FSI) simulations in an aorta model subjected to both valvular flows. Remodeling of porcine aortic tissue exposed to TAV and BAV AA WSS for 48 h in a cone-and-plate bioreactor was investigated via immunostaining, immunoblotting and zymography. FSI simulations revealed the existence of larger and more unidirectional WSS in the BAV than in the TAV AA convexity. Exposure of normal aortic tissue to BAV AA WSS resulted in increased MMP-2 and MMP-9 expressions and MMP-2 activity but similar fibrillin-1 content and microfibril organization relative to the TAV AA WSS treatment. This study confirms the sensitivity of aortic tissue to WSS abnormalities and demonstrates the susceptibility of BAV hemodynamic stresses to focally mediate aortic medial degradation. The results provide compelling support to the important role of hemodynamics in BAV secondary aortopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agozzino L, Ferraraccio F, Esposito S et al (2002) Medial degeneration does not involve uniformly the whole ascending aorta: morphological, biochemical and clinical correlations. Eur J Cardiothorac Surg 21:675–682

    Article  Google Scholar 

  • Barker AJ, Lanning C, Shandas R (2010) Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng 38:788–800. doi:10.1007/s10439-009-9854-3

    Article  Google Scholar 

  • Barker AJ, Markl M (2011) The role of hemodynamics in bicuspid aortic valve disease. Eur J Cardiothorac Surg 39:805–806. doi:10.1016/j.ejcts.2011.01.006

    Article  Google Scholar 

  • Barker AJ, Markl M, Bürk J et al (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5:457–466. doi:10.1161/CIRCIMAGING.112.973370

    Article  Google Scholar 

  • Bathe M, Kamm RD (1999) A fluid–structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. J Biomech Eng 121:361–369. doi:10.1115/1.2798332

    Article  Google Scholar 

  • Bauer M, Siniawski H, Pasic M et al (2006) Different hemodynamic stress of the ascending aorta wall in patients with bicuspid and tricuspid aortic valve. J Card Surg 21:218–220. doi:10.1111/j.1540-8191.2006.00219.x

    Article  Google Scholar 

  • Bergh N, Ulfhammer E, Karlsson L, Jern S (2008) Effects of two complex hemodynamic stimulation profiles on hemostatic genes in a vessel-like environment. Endothelium 15:231–238. doi:10.1080/10623320802487536

    Article  Google Scholar 

  • Berk BC, Corson MA, Peterson TE, Tseng H (1995) Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow. J Biomech 28:1439–1450. doi:10.1016/0021-9290(95)00092-5

    Article  Google Scholar 

  • Bissell MM, Hess AT, Biasiolli L et al (2013) Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging 6:499–507. doi:10.1161/CIRCIMAGING.113.000528

    Article  Google Scholar 

  • Boyum J, Fellinger EK, Schmoker JD et al (2004) Matrix metalloproteinase activity in thoracic aortic aneurysms associated with bicuspid and tricuspid aortic valves. J Thorac Cardiovasc Surg 127:686–691. doi:10.1016/j.jtcvs.2003.11.049

    Article  Google Scholar 

  • Butcher JT, Tressel S, Johnson T et al (2006) Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol 26:69–77. doi:10.1161/01.ATV.0000196624.70507.0d

    Article  Google Scholar 

  • Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11:1085–1096. doi:10.1007/s10237-012-0375-x

    Article  Google Scholar 

  • Chandran KB, Yoganathan AP, Rittgers SE (2007) Hemodynamic theories of atherosclerosis. Biofluid Mech Hum Circ. CRC Press, Boca Raton

    Google Scholar 

  • Collins MJ, Butany J, Borger MA et al (2008) Implications of a congenitally abnormal valve: a study of 1025 consecutively excised aortic valves. J Clin Pathol 61:530–536. doi:10.1136/jcp.2007.051904

    Article  Google Scholar 

  • Cotrufo M, Della Corte A et al (2005) Different patterns of extracellular matrix protein expression in the convexity and the concavity of the dilated aorta with bicuspid aortic valve: preliminary results. J Thorac Cardiovasc Surg 130:504–511. doi:10.1016/j.jtcvs.2005.01.016

    Google Scholar 

  • Cummings I, George S, Kelm J et al (2012) Tissue-engineered vascular graft remodeling in a growing lamb model: expression of matrix metalloproteinases. Eur J Cardiothorac Surg 41:167–172. doi:10.1016/j.ejcts.2011.02.077

    Google Scholar 

  • Della Corte A, Quarto C, Bancone C et al (2008) Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling. J Thorac Cardiovasc Surg 135:8–18. doi:10.1016/j.jtcvs.2007.09.009

    Article  Google Scholar 

  • Donea J, Guiliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite-element method for transient dynamic fluid structure interactions. Comput Methods Appl Mech Eng 33:689–723. doi:10.1016/0045-7825(82)90128-1

    Article  MATH  Google Scholar 

  • Fedak PWM, de Sa MPL, Verma S et al (2003) Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg 126:797–806. doi:10.1016/S0022-5223(03)00398-2

    Article  Google Scholar 

  • Fedak PWM, Verma S, David TE et al (2002) Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106:900–904. doi:10.1161/01.CIR.0000027905.26586.E8

    Article  Google Scholar 

  • Fukui T, Matsumoto T, Tanaka T et al (2005) In vivo mechanical properties of thoracic aortic aneurysmal wall estimated from in vitro biaxial tensile test. Biomed Mater Eng 15:295–305

    Google Scholar 

  • Girdauskas E, Borger MA, Kuntze T, Hope MD (2010) Aortopathy in bicuspid aortic valve disease: is it really congenital? Radiology 256:1015–1016; author reply 1016. doi:10.1148/radiol.101046

    Google Scholar 

  • Girdauskas E, Borger MA, Secknus MA et al (2011) Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Eur J Cardiothorac Surg 39:809–814. doi:10.1016/j.ejcts.2011.01.001

    Article  Google Scholar 

  • Girdauskas E, Disha K, Borger M-A, Kuntze T (2012) Relation of bicuspid aortic valve morphology to the dilatation pattern of the proximal aorta: focus on the transvalvular flow. Cardiol Res Pract 2012:478259. doi:10.1155/2012/478259

    Google Scholar 

  • Grote K, Flach I, Luchtefeld M et al (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92:e80–e86. doi:10.1161/01.RES.0000077044.60138.7C

    Article  Google Scholar 

  • Hahn MS, McHale MK, Wang E et al (2007) Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann Biomed Eng 35:190–200. doi:10.1007/s10439-006-9099-3

    Article  Google Scholar 

  • Hoehn D, Sun L, Sucosky P (2010) Role of pathologic shear stress alterations in aortic valve endothelial activation. Cardiovasc Eng Technol 1:165–178. doi:10.1007/s13239-010-0015-5

    Article  Google Scholar 

  • Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900. doi:10.1016/S0735-1097(02)01886-7

    Article  Google Scholar 

  • Hope MD, Hope TA, Meadows AK et al (2010) Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255:53–61. doi:10.1148/radiol.09091437

    Article  Google Scholar 

  • Hope MD, Meadows AK, Hope TA et al (2008) Images in cardiovascular medicine. Evaluation of bicuspid aortic valve and aortic coarctation with 4D flow magnetic resonance imaging. Circulation 117:2818–2819. doi:10.1161/CIRCULATIONAHA.107.760124

    Article  Google Scholar 

  • Ikonomidis JS, Jones JA, Barbour JR et al (2007) Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg 133:1028–1036. doi:10.1016/j.jtcvs.2006.10.083

    Article  Google Scholar 

  • Jeltsch M, Klass O, Klein S et al (2009) Aortic wall thickness assessed by multidetector computed tomography as a predictor of coronary atherosclerosis. Int J Cardiovasc Imaging 25:209–217. doi:10.1007/s10554-008-9373-6

    Article  Google Scholar 

  • Kang J-W, Song HG, Yang DH et al (2013) Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging 6:150–161. doi:10.1016/j.jcmg.2012.11.007

    Article  Google Scholar 

  • Khoo C, Cheung C, Jue J (2013) Patterns of Aortic Dilatation in Bicuspid Aortic Valve-Associated Aortopathy. J Am Soc Echocardiogr 26:600–605. doi:10.1016/j.echo.2013.02.017

    Article  Google Scholar 

  • Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29:399–434. doi:10.1146/annurev.fluid.29.1.399

    Article  MathSciNet  Google Scholar 

  • Lantz J, Renner J, Karlsson M (2011) Wall shear stress in a subject specific human aorta—influence of fluid–structure interaction. Int J Appl Mech 03:759–778. doi:10.1142/S1758825111001226

    Article  Google Scholar 

  • Lehoux S, Tedgui A (2003) Cellular mechanics and gene expression in blood vessels. J Biomech 36:631–643. doi:10.1016/S0021-9290(02)00441-4

    Article  Google Scholar 

  • Lehoux S, Tedgui A (1998) Signal transduction of mechanical stresses in the vascular wall. Hypertension 32:338–345. doi:10.1161/01.HYP.32.2.338

    Article  Google Scholar 

  • LeMaire SA, Wang X, Wilks JA et al (2005) Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res 123:40–48. doi:10.1016/j.jss.2004.06.007

    Article  Google Scholar 

  • Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347

    Article  Google Scholar 

  • Li S, Kim M, Hu YL et al (1997) Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J Biol Chem 272:30455–30462. doi:10.1074/jbc.272.48.30455

    Article  Google Scholar 

  • Mott RE, Helmke BP (2007) Mapping the dynamics of shear stress-induced structural changes in endothelial cells. Am J Physiol Cell Physiol 293:C1616–C1626. doi:10.1152/ajpcell.00457.2006

    Article  Google Scholar 

  • Nataatmadja M, West M, West J et al (2003) Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm. Circulation 108(Suppl 1):II329–II334. doi:10.1161/01.cir.0000087660.82721.15

    Google Scholar 

  • Nathan DP, Xu C, Gorman JH et al (2011a) Pathogenesis of acute aortic dissection: a finite element stress analysis. Ann Thorac Surg 91:458–463. doi:10.1016/j.athoracsur.2010.10.042

    Article  Google Scholar 

  • Nathan DP, Xu C, Plappert T et al (2011) Increased ascending aortic wall stress in patients with bicuspid aortic valves. Ann Thorac Surg 92:1384–1389. doi:10.1016/j.athoracsur.2011.04.118

    Article  Google Scholar 

  • Nerem RM (1993) Hemodynamics and the vascular endothelium. ASME J Biomech Eng 115:510. doi:10.1115/1.2895532

    Article  Google Scholar 

  • Niwa K, Perloff JK, Bhuta SM et al (2001) Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation 103:393–400. doi:10.1161/01.CIR.103.3.393

    Article  Google Scholar 

  • Nkomo VT, Enriquez-Sarano M, Ammash NM et al (2003) Bicuspid aortic valve associated with aortic dilatation: a community-based study. Arterioscler Thromb Vasc Biol 23:351–356. doi:10.1161/01.ATV.0000055441.28842.0A

    Article  Google Scholar 

  • Olufsen MS, Peskin CS, Kim WY et al (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299. doi:10.1114/1.1326031

    Article  Google Scholar 

  • Roberts WC (1970) The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol 26:72–83. doi:10.1016/0002-9149(70)90761-7

    Article  Google Scholar 

  • Saikrishnan N, Yap C-H, Milligan NC et al (2012) In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann Biomed Eng 40:1760–1775. doi:10.1007/s10439-012-0527-2

    Article  Google Scholar 

  • Schmid F-X, Bielenberg K, Schneider A et al (2003) Ascending aortic aneurysm associated with bicuspid and tricuspid aortic valve: involvement and clinical relevance of smooth muscle cell apoptosis and expression of cell death-initiating proteins. Eur J Cardiothorac Surg 23:537–543. doi:10.1016/S1010-7940(02)00833-3

    Article  Google Scholar 

  • Seaman C, Akingba A, Sucosky P (2014) Steady flow hemodynamic and energy loss measurements in normal and simulated calcified tricuspid and bicuspid aortic valves. J Biomech Eng. doi:10.1115/1.4026575

  • Sievers HH, Schmidtke C (2007) A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg 133:1226–1233. doi:10.1016/j.jtcvs.2007.01.039

    Article  Google Scholar 

  • Silber HA, Bluemke DA, Ouyang P et al (2001) The relationship between vascular wall shear stress and flow-mediated dilation: endothelial function assessed by phase-contrast magnetic resonance angiography. J Am Coll Cardiol 38:1859–1865. doi:10.1016/S0735-1097(01)01649-7

    Google Scholar 

  • Stalder AF, Russe MF, Frydrychowicz A et al (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60:1218–1231. doi:10.1002/mrm.21778

    Article  Google Scholar 

  • Sucosky P, Padala M, Elhammali A et al (2008) Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J Biomech Eng 130:35001–35008. doi:10.1115/1.2907753

    Article  Google Scholar 

  • Sun L, Chandra S, Sucosky P (2012) Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS One 7:e48843. doi:10.1371/journal.pone.0048843

    Article  Google Scholar 

  • Sun L, Rajamannan N, Sucosky P (2013) Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS One 8:e84433. doi:10.1371/journal.pone.0084433

    Article  Google Scholar 

  • Sun L, Rajamannan NM, Sucosky P (2011) Design and validation of a novel bioreactor to subject aortic valve leaflets to side-specific shear stress. Ann Biomed Eng 39:2174–2185. doi:10.1007/s10439-011-0305-6

    Article  Google Scholar 

  • Tadros TM, Klein MD, Shapira OM (2009) Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation 119:880–890. doi:10.1161/CIRCULATIONAHA.108.795401

    Article  Google Scholar 

  • Thyberg J, Hultgårdh-Nilsson A (1994) Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell Tissue Res 276:263–271. doi:10.1007/BF00306112

    Article  Google Scholar 

  • Tzemos N, Lyseggen E, Silversides C et al (2010) Endothelial function, carotid-femoral stiffness, and plasma matrix metalloproteinase-2 in men with bicuspid aortic valve and dilated aorta. J Am Coll Cardiol 55:660–668. doi:10.1016/j.jacc.2009.08.080

    Article  Google Scholar 

  • Ward C (2000) Clinical significance of the bicuspid aortic valve. Heart 83:81–85. doi:10.1136/heart.83.1.81

    Article  Google Scholar 

  • Wen D, Zhou X-L, Li J-J, Hui R-T (2011) Biomarkers in aortic dissection. Clin Chim Acta 412:688–695. doi:10.1016/j.cca.2010.12.039

    Article  Google Scholar 

  • Wilton E, Bland M, Thompson M, Jahangiri M (2008) Matrix metalloproteinase expression in the ascending aorta and aortic valve. Interact Cardiovasc Thorac Surg 7:37–40. doi:10.1510/icvts.2007.163311

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a National Science Foundation faculty early CAREER Grant CMMI-1148558, an American Heart Association scientist development Grant 11SDG7600103 and Faculty Seed Funds from the College of Engineering at the University of Notre Dame. The authors would like to thank Andrew McNally and Ling Sun for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Sucosky.

Additional information

Samantha K. Atkins and Kai Cao have contributed equally to this work and share first-authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkins, S.K., Cao, K., Rajamannan, N.M. et al. Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas. Biomech Model Mechanobiol 13, 1209–1225 (2014). https://doi.org/10.1007/s10237-014-0567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0567-7

Keywords

Navigation