Skip to main content
Log in

Aortic wall thickness assessed by multidetector computed tomography as a predictor of coronary atherosclerosis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose of this study was the evaluation of the thoracic aortic wall thickness as a potential identifier of patients at increased risk for future cardiac events. Thoracic aortic wall thickness was measured with MDCT in 160 patients. The CT-scans were implemented as non-invasive coronary angiography studies. Relationships between aortic wall thickness, sex, age, major risk factors and atherosclerotic plaque burden of the coronary arteries were explored. Higher values of maximum aortic wall thickness of the descending aorta (women P = 0.02, men P = 0.01) were found in patients with coronary atherosclerosis, compared to patients with same gender but excluded atherosclerosis. Aortic wall thickness of the mid-portion of the descending aorta of 3.0 mm is associated with coronary artery disease (CAD) with a specificity of 96.6% (sensitivity 27.5%) and a positive predictive value (PPV) of 93.3%. For patients with two or more major risk factors and a maximum wall thickness of equal or more than 2.6 mm we found a PPV of 100%. We conclude that measurements of maximum wall thickness of the descending aorta are a potential tool for detecting patients with coronary atherosclerosis. The potential effect of combining measurements of aortic wall thickness at routine chest CT studies with a possible cardiovascular screening is substantial and merits further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Budoff MJ (2003) Atherosclerosis imaging and calcified plaque: coronary artery disease risk assessment. Prog Cardiovasc Dis 46(2):135–148. doi:10.1016/S0033-0620(03)00083-5

    Article  PubMed  Google Scholar 

  2. Fuster V, Fayad ZA, Moreno PR, Poon M, Corti R, Badimon JJ (2005) Atherothrombosis and high-risk plaque: part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. J Am Coll Cardiol 46(7):1209–1218. doi:10.1016/j.jacc.2005.03.075

    Article  CAS  PubMed  Google Scholar 

  3. Aronow WS, Ahn C (1994) Prevalence of coexistence of coronary artery disease, peripheral arterial disease, and atherothrombotic brain infarction in men and women > or = 62 years of age. Am J Cardiol 74(1):64–65. doi:10.1016/0002-9149(94)90493-6

    Article  CAS  PubMed  Google Scholar 

  4. (1996) A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet 348(9038):1329–1339. doi:10.1016/S0140-6736(96)09457-3

  5. Chambless LE, Heiss G, Folsom AR et al (1997) Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 146(6):483–494

    CAS  PubMed  Google Scholar 

  6. Hodis HN, Mack WJ, LaBree L et al (1998) The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med 128(4):262–269

    CAS  PubMed  Google Scholar 

  7. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE (1997) Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96(5):1432–1437

    CAS  PubMed  Google Scholar 

  8. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340(1):14–22. doi:10.1056/NEJM199901073400103

    Article  CAS  PubMed  Google Scholar 

  9. Salonen JT, Salonen R (1991) Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arterioscler Thromb 11(5):1245–1249

    CAS  PubMed  Google Scholar 

  10. Rohani M, Jogestrand T, Ekberg M et al (2005) Interrelation between the extent of atherosclerosis in the thoracic aorta, carotid intima-media thickness and the extent of coronary artery disease. Atherosclerosis 179(2):311–316. doi:10.1016/j.atherosclerosis.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  11. Couturier G, Voustaniouk A, Weinberger J, Fuster V (2006) Correlation between coronary artery disease and aortic arch plaque thickness measured by non-invasive B-mode ultrasonography. Atherosclerosis 185(1):159–164. doi:10.1016/j.atherosclerosis.2005.05.035

    Article  CAS  PubMed  Google Scholar 

  12. Takasu J, Mao S, Budoff MJ (2003) Aortic atherosclerosis detected with electron-beam CT as a predictor of obstructive coronary artery disease. Acad Radiol 10(6):631–637. doi:10.1016/S1076-6332(03)80081-8

    Article  PubMed  Google Scholar 

  13. Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15(9):1512–1531

    CAS  PubMed  Google Scholar 

  14. Jaffer FA, O’Donnell CJ, Larson MG et al (2002) Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 22(5):849–854. doi:10.1161/01.ATV.0000012662.29622.00

    Article  CAS  PubMed  Google Scholar 

  15. (1996) Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. The French Study of aortic plaques in Stroke Group. N Engl J Med 334(19):1216–1221. doi:10.1056/NEJM199605093341902

  16. Haberl R, Becker A, Leber A et al (2001) Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 37(2):451–457. doi:10.1016/S0735-1097(00)01119-0

    Article  CAS  PubMed  Google Scholar 

  17. Takasu J, Takanashi K, Naito S et al (1992) Evaluation of morphological changes of the atherosclerotic aorta by enhanced computed tomography. Atherosclerosis 97(2–3):107–121. doi:10.1016/0021-9150(92)90124-Y

    Article  CAS  PubMed  Google Scholar 

  18. Agmon Y, Khandheria BK, Meissner I et al (2002) Relation of coronary artery disease and cerebrovascular disease with atherosclerosis of the thoracic aorta in the general population. Am J Cardiol 89(3):262–267. doi:10.1016/S0002-9149(01)02225-1

    Article  PubMed  Google Scholar 

  19. Belhassen L, Carville C, Pelle G et al (2002) Evaluation of carotid artery and aortic intima-media thickness measurements for exclusion of significant coronary atherosclerosis in patients scheduled for heart valve surgery. J Am Coll Cardiol 39(7):1139–1144. doi:10.1016/S0735-1097(02)01748-5

    Article  PubMed  Google Scholar 

  20. Fazio GP, Redberg RF, Winslow T, Schiller NB (1993) Transesophageal echocardiographically detected atherosclerotic aortic plaque is a marker for coronary artery disease. J Am Coll Cardiol 21(1):144–150

    Article  CAS  PubMed  Google Scholar 

  21. Tribouilloy C, Shen WF, Peltier M, Lesbre JP (1994) Noninvasive prediction of coronary artery disease by transesophageal echocardiographic detection of thoracic aortic plaque in valvular heart disease. Am J Cardiol 74(3):258–260. doi:10.1016/0002-9149(94)90367-0

    Article  CAS  PubMed  Google Scholar 

  22. Ko SF, Hsieh MJ, Chen MC et al (2005) Effects of heart rate on motion artifacts of the aorta on non-ECG-assisted 0.5-sec thoracic MDCT. Am J Roentgenol 184(4):1225–1230

    Google Scholar 

  23. Hoffmann MH, Shi H, Schmitz BL et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293(20):2471–2478. doi:10.1001/jama.293.20.2471

    Article  CAS  PubMed  Google Scholar 

  24. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109(1):14–17. doi:10.1161/01.CIR.0000111517.69230.0F

    Article  PubMed  Google Scholar 

  25. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154. doi:10.1016/j.jacc.2005.03.071

    Article  PubMed  Google Scholar 

  26. Leber AW, Knez A, Becker A et al (2005) Visualising noncalcified coronary plaques by CT. Int J Cardiovasc Imaging 21(1):55–61. doi:10.1007/s10554-004-5337-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jeltsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeltsch, M., Klass, O., Klein, S. et al. Aortic wall thickness assessed by multidetector computed tomography as a predictor of coronary atherosclerosis. Int J Cardiovasc Imaging 25, 209–217 (2009). https://doi.org/10.1007/s10554-008-9373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9373-6

Keywords

Navigation