Skip to main content

Advertisement

Log in

Modeling of climate tendencies in Arctic seas based on atmospheric forcing EOF decomposition

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The article analyzes the results of the EOF decomposition of climatic data and assesses the role of its components in the formation of climatic ice tendencies of recent decades. The analysis considers a state vector, which includes sea level pressure, surface air temperature, and surface wind, scaled accordingly. The seasonal cycle variations were also considered. An assessment of the ocean-ice system sensitivity to the time scales of atmospheric processes, based on the SibCIOM model, showed that the rate of decline of the annual ice minimum volume decreases by 2/3 when atmospheric forcing contains no variations of the 8–30-day scale, that is, if the formation of atmospheric blockings is excluded. Applying trend elimination for each of the EOF modes, comparing the results of the simulation with the base experiment which includes all trends, it was possible to estimate the role of each mode in shaping the trend of Arctic ice volume decline. The comparison shows that the first mode, representing the seasonal cycle, forms an integral tendency of ice volume decline by 96% of the original trend. Among other modes, the strongest influence on this trend shows second mode, representing Arctic Oscillations; it forms trend by 17%, and third mode, resulting from inclusion of the surface air temperature into the state vector, by 18%. In the marginal seas, the role of higher modes becomes not so small in comparison with the first mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Årthun M, Eldevik T (2016) On anomalous ocean heat transport toward the Arctic and associated climate predictability. J Clim 29:689–704. https://doi.org/10.1175/jcli-d-15-0448.1

    Article  Google Scholar 

  • Bitz CM, Lipscomb WH (1999) An energy-conserving thermodynamic model of sea ice. J Geophys Res Oceans 104(C7):15669–15677

  • Bjornsson H, Venegas SA (1997) A manual of EOF and SVD analyses of climate data. Department of Atmospheric and Oceanic Sciences and Centre for Climate and Global Change Research, McGill University

  • Burt MA, Randall DA, Branson MD (2015) Dark warming. J Clim 29:705–719. https://doi.org/10.1175/jcli-d-15-0147.1

    Article  Google Scholar 

  • Cao Y, Liang S, Chen X, He T, Wang D, Cheng X (2017) Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting. Sci Rep 7(1)

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. https://doi.org/10.1029/2007GL031972

    Article  Google Scholar 

  • Dong X, Zib BJ, Xi B, Stanfield R, Deng Y, Zhang X, Lin B, Long CN (2014) Critical mechanisms for the formation of extreme Arctic sea-ice extent in the summers of 2007 and 1996. Clim Dyn 43:53–70. https://doi.org/10.1007/s00382-013-1920-8

    Article  Google Scholar 

  • Dymnikov VP, Volodin EM, Galin VY, Glazunov AV, Gritsun AS, Dianskii NA, Lykosov VN (2004) Sensitivity of the climate system to small external forcing. Russian meteorology and hydrology. Issue 4. P. 53–64

  • Francis JA, Hunter E, Key JR, Wang X (2005) Clues to variability in Arctic minimum sea ice extent. Geophys Res Lett 32:L21501. https://doi.org/10.1029/2005GL024376

    Article  Google Scholar 

  • Fučkar A, Guemas V, Johnson NC, Massonnet F, Doblas-Reyes FJ (2016) Clusters of interannual sea ice variability in the northern hemisphere. Clim Dyn 47:1527–1543. https://doi.org/10.1007/s00382-015-2917-2

    Article  Google Scholar 

  • Golubeva EN, Platov GA (2007) On improving the simulation of AtlanticWater circulation in the Arctic Ocean. J Geophys Res 112:C04S05. https://doi.org/10.1029/2006JC003734

    Article  Google Scholar 

  • Golubeva EN, Platov GA (2009) Numerical modeling of the Arctic Ocean Ice System Response To Variations In The Atmospheric Circulation from 1948 to 2007. Izv Atmos Oceanic Phys 45(1):137–151

    Article  Google Scholar 

  • Golubeva EN, Ivanov JA, Kuzin VI, Platov GA (1992) Numerical modeling of the World Ocean circulation including upper ocean mixed layer. Oceanology. 32(3):395–405

    Google Scholar 

  • Graversen RJ, Mauritsen T, Tjernström M, Källén E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53–56

    Article  Google Scholar 

  • Graversen RJ, Langen PL, Mauritsen T (2014) Polar amplification in the CCSM4 climate model, the contributions from the lapse-rate and the surface-albedo feedbacks. J Clim 27:4433–4450. https://doi.org/10.1175/jcli-d-13-00551.1

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elastic–viscous–plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867. https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperature and precipitation. Science 269:676–679

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jun S-Y, Ho C-H, Jeong J-H, Choi Y-S, Kim B-M (2016) Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions/. Tellus A 68:29130. https://doi.org/10.3402/tellusa.v68.29130

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Roy J, Dennis J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–470

    Article  Google Scholar 

  • Katsov VM, Porfiriev BN (2011) Climate change in the Arctic: environmental and economic impacts. Arctic: Ecol Econ 2(6):66–79 (in Russian)

    Google Scholar 

  • Kay JE, Holland MM, Jahn A (2011) Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys Res Lett 38:L15708. https://doi.org/10.1029/2011GL048008

    Article  Google Scholar 

  • Kim K-Y, Hamlington BD, Na H, Kim J (2016) Mechanism of seasonal Arctic sea ice evolution and Arctic amplification. Cryosphere 10:2191–2202. https://doi.org/10.5194/tc-10-2191-2016

    Article  Google Scholar 

  • Kim K-Y, Kim J, Yeo S, Na H, Hamlington BD, Leben RR (2017) Understanding the mechanism of Arctic amplification and sea ice loss. Cryosphere Discuss. https://doi.org/10.5194/tc-2017-39

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan Ser II 93(1):5–48. https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Large WG, Yeager SG (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364. https://doi.org/10.1007/s00382-008-0441-3

    Article  Google Scholar 

  • Lee S, Gong T, Feldstein SB, Screen JA, Simmonds I (2017) Revising the cause of the 1989-2009 Arctic surface warming using the surface energy budget: downward infrared radiation dominates the surface fluxes. Geophys Res Lett 44:10654–10661. https://doi.org/10.1002/2017GL075375

    Article  Google Scholar 

  • Leonard BP (1979) A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98

    Article  Google Scholar 

  • Leonard BP, Lock AP, MacVean MK (1996) Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon Weather Rev 124:2588–2606

    Article  Google Scholar 

  • Lindsay R, Schweiger A (2015) Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere 9:269–283. https://doi.org/10.5194/tc-9-269-2015

    Article  Google Scholar 

  • Lipscomb WH, Hunke EC (2004) Modeling sea ice transport using incremental remapping. Mon Wea Rev 132:1341–1354. https://doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2

  • Liu Y, Key JR (2014) Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environ Res Lett 9:044002. https://doi.org/10.1088/1748-9326/9/4/044002

    Article  Google Scholar 

  • Luo D, Xiao Y, Yao Y, Dai A, Simmonds I, Franzke CLE (2016a) Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies Part I: Blocking-Induced Amplification. J Climate 29:3926–3947. https://doi.org/10.1175/JCLI-D-15-0611.1

    Google Scholar 

  • Luo D, Xiao Y, Yao Y, Dai A, Simmonds I, Franzke CLE (2016b) Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies Part I: The Link to the North Atlantic Oscillation. J Clim 29:3949–3971. https://doi.org/10.1175/JCLI-D-15-0612.1

    Article  Google Scholar 

  • Luo B, Luo D, Wu L, Zhong L, Simmonds I (2017) Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ Res Lett 12:054017. https://doi.org/10.1088/1748-9326/aa69d0

    Article  Google Scholar 

  • Luo D, Chen X, Dai A, Simmonds I (2018) Changes in atmospheric blocking circulations linked with winter Arctic warming: a new perspective. J Clim 31:7661–7678. https://doi.org/10.1175/JCLI-D-18-0040.1

    Article  Google Scholar 

  • Lyakhov AN (2006) Modern methods of data processing in geophysics. In: Lectures of BFShSh-2006, pp. 39–46 (in Russian)

  • Lykossov VN, Platov GA (1992) A numerical model of interaction between atmospheric and oceanic boundary layers. Russ J Numer Anal Math Model 7(5):419–440

    Article  Google Scholar 

  • Malakhova VV, Golubeva EN (2013) On possible methane emissions from the East Arctic Sea. Atmos Oceanic Opt 26(6):452–458 (in Russian)

    Google Scholar 

  • Murray RJ (1996) Explicit generation of orthogonal grids for ocean models. J Comput Phys 126:251–273. https://doi.org/10.1006/jcph.1996.0136

    Article  Google Scholar 

  • Nghiem S, Rigor I, Perovich D, Clemente-Colón P, Weatherly J, Neumann G (2007) Rapid reduction of Arctic perennial sea ice. Geophys Res Lett 34:L19504. https://doi.org/10.1029/2007GL031138

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706. https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2

    Article  Google Scholar 

  • Parkinson CL, Washington WM (1979) A large scale numerical model of sea ice. J Geophys Res 84:311–337

    Article  Google Scholar 

  • Pithan F, Mauritsen T (2014) Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci 7:181–184. https://doi.org/10.1038/ngeo2071

    Article  Google Scholar 

  • Platov G (2011) Numerical modeling of the Arctic Ocean deepwater formation: part II. Results of regional and global experiments. Izv Atmos Oceanic Phys 47(3):377–392. https://doi.org/10.1134/s0001433811020083

    Article  Google Scholar 

  • Proshutinsky A, Johnson MA (1997) Two circulation regimes of the wind driven Arctic Ocean. J Geophys Res 102:12493–12514

    Article  Google Scholar 

  • Proshutinsky A, Kowalik Z (2007) Preface to special section on Arctic Ocean model intercomparison project (AOMIP) studies and results. J Geophys Res 112:C04S01. https://doi.org/10.1029/2006JC004017

    Google Scholar 

  • Proshutinsky A, Steele M, Timmermans M-L (2016) Forum for Arctic Modeling and Observational Synthesis (FAMOS): past, current, and future activities. J Geophys Res Oceans 121:3803–3819. https://doi.org/10.1002/2016JC011898

    Article  Google Scholar 

  • Rigor IG, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979-97. J Clim 13:896–914

    Article  Google Scholar 

  • Rigor IG, Wallace JM, Colony RL (2002) Response of sea ice to the Arctic oscillation. J Clim 15:2648–2663

    Article  Google Scholar 

  • Rosati A, Miyakoda K (1988) A general-circulation model for upper-ocean simulation. J Phys Oceanogr 18:1601–1626

    Article  Google Scholar 

  • Röske F (2006) A global heat and freshwater forcing dataset for ocean models. Ocean Model 11:235–297

    Article  Google Scholar 

  • Rossow WB, Zhang Y-S (1995) Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP datasets, 2 Validation and first results. J Geophys Res, 100: 1167–1197

  • Sarkisyan AS, Ibrayev RA, Iakovlev NG (2010) High resolution and four-dimensional analysis as a prospect for ocean modelling. Russ J Numer Anal Math Model 25(5):477–496

    Article  Google Scholar 

  • Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J Geophys Res 116:C00D06. https://doi.org/10.1029/2011JC007084

    Article  Google Scholar 

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337. https://doi.org/10.1038/nature09051

    Article  Google Scholar 

  • Screen JA, Simmonds I (2011) Erroneous Arctic temperature trends in the ERA-40 reanalysis: a closer look. J. Climate, 24. 2620–2627. doi: https://doi.org/10.1175/2010JCLI4054.1

  • Screen JA, Simmonds I (2013) Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett 40:959–964. https://doi.org/10.1002/GRL.50174

    Article  Google Scholar 

  • Screen JA, Deser C, Simmonds I (2012) Local and remote controls on observed Arctic warming. Geophys Res Lett 39:L10709. https://doi.org/10.1029/2012GL051598

    Article  Google Scholar 

  • Semiletov IP, Savelieva NI, Weller GE, Pipko II, Pugach SP, Gukov AY, Vasilevskaya LN (2000) The dispersion of Siberian river flows into coastal waters: meteorological, hydrological and hydrochemical aspects. In: Lewis EL (ed) The freshwater budget of the Arctic Ocean, NATO Sci. Ser., Partnership Sub-ser., 70: pp 323—366. Kluwer Acad., Norwell, Mass

  • Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Chang 77(1-2):85–96

  • Serreze MC, Hurst CM (2000) Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. J Clim 13:182–201

    Article  Google Scholar 

  • Simmonds I (2015) Comparing and contrasting the behavior of Arctic and Antarctic sea ice over the 35 year period 1979-2013. Ann Glacial 56:18–28. https://doi.org/10.3189/2015AoG69A909

    Article  Google Scholar 

  • Smedsrud LH, Sirevaag A, Kloster K, Sorteberg A, Sandven S (2011) Resent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. Cryosphere 5:821–829. https://doi.org/10.5194/tc-5-821-2011

    Article  Google Scholar 

  • Smedsrud LH, Esau I, Ingvaldsen RB, Eldevik T, Haugan PM, Li C, Lien VS, Olsen A, Omar AM, Otterå OH, Risebrobakken B, Sandø AB, Semenov VA, Sorokina SA (2013) The role of the Barents Sea in the Arctic climate system. Rev Geophys 51:415–449. https://doi.org/10.1002/rog.20017

    Article  Google Scholar 

  • Smedsrud LH, Halvorsen MH, Stroeve JC, Zhang R, Kloster K (2017) Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere 11:65–79. https://doi.org/10.5194/tc-11-65-2017

    Article  Google Scholar 

  • Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331:450–453. https://doi.org/10.1126/science.1197397

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Clim 14:2079–2087

    Article  Google Scholar 

  • Stroeve JC, Notz D (2015) Insights on past and future sea-ice evolution from combining observations and models. Glob Planet Chang 135:119–132. https://doi.org/10.1016/j.gloplacha.2015.10.011

    Article  Google Scholar 

  • Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502. https://doi.org/10.1029/2012GL052676

    Article  Google Scholar 

  • Taylor PC, Cai M, Hu A, Meehl J, Washington W, Zhang GJ (2013) A decomposition of feedback contributions to polar warming amplification. J Clim 26:7023–7043. https://doi.org/10.1175/jcli-d-12-00696.1

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300. https://doi.org/10.1029/98GL00950

    Article  Google Scholar 

  • Vorosmarty CJ, Fekete BM, Tucker BA (1998) Global River Discharge, 1807-1991, V[ersion]. 1.1 (RivDIS). ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/199. Accessed 07 March 2019

  • Walsh JE, Chapman WL, Shy TL (1996) Recent decrease of sea level pressure in the central Arctic. J Clim 9:480–485

    Article  Google Scholar 

  • Watanabe E, Wang J, Sumi A, Hasumi H (2006) Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophys Res Lett 33:L23703. https://doi.org/10.1029/2006GL028112

    Article  Google Scholar 

  • Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Met Soc 78:2539–2558

    Article  Google Scholar 

  • Yao Y, Luo D, Dai A, Simmonds I (2017) Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming Part I: Insights from observational analyses. J Clim, 30: 3549–3568. doi: https://doi.org/10.1175/JCL-D-16-0261.1

  • Zhang R (2015) Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc Natl Acad Sci U S A 112:4570–4575. https://doi.org/10.1073/pnas.1422296112

    Article  Google Scholar 

  • Zhang JL, Rothrock DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon Weather Rev 131:845–861

    Article  Google Scholar 

  • Zillman JW (1972) A study of some aspects of the radiation and heat budgets of the southern hemisphere oceans. Meteorol. Stud., 26, Bur. of Meteor., Dep. of the Interior, Canberra, Australia

  • Zveryaev II, Gulev SK (2009) Seasonality in secular changes and interannual variability of European air temperature during the twentieth century. J Geophys Res 114:D02110. https://doi.org/10.1029/2008JD010624

    Article  Google Scholar 

Download references

Funding

The work is a subject of Government Order 0315-2019-0004 and was supported by the Presidium of Russian Academy of Sciences, Project No. 51, and the Russian Foundation for Basic Research, Grant Nos. 17-05-00382 and 16-05-00558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady A. Platov.

Additional information

Responsible Editor: Hugues Goosse

This article is part of the Topical Collection on the 50th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 28 May to 1 June 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platov, G.A., Golubeva, E.N., Kraineva, M.V. et al. Modeling of climate tendencies in Arctic seas based on atmospheric forcing EOF decomposition. Ocean Dynamics 69, 747–767 (2019). https://doi.org/10.1007/s10236-019-01259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-019-01259-1

Keywords

Navigation