Skip to main content
Log in

Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a numerical method for approximating the solutions of degenerate parabolic equations with a formal gradient flow structure. The numerical method we propose preserves at the discrete level the formal gradient flow structure, allowing the use of some nonlinear test functions in the analysis. The existence of a solution to and the convergence of the scheme are proved under very general assumptions on the continuous problem (nonlinearities, anisotropy, heterogeneity) and on the mesh. Moreover, we provide numerical evidences of the efficiency and of the robustness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Agueh. Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Differential Equations, 10(3):309–360, 2005.

    MathSciNet  MATH  Google Scholar 

  2. H. W. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Math. Z., 183(3):311–341, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.

    MATH  Google Scholar 

  4. L. Ambrosio, E. Mainini, and S. Serfaty. Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(2):217–246, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Ambrosio and S. Serfaty. A gradient flow approach to an evolution problem arising in superconductivity. Comm. Pure Appl. Math., 61(11):1495–1539, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Andreianov. Time compactness tools for discretized evolution equations and applications to degenerate parabolic PDEs. In Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, volume 4 of Springer Proc. Math., pages 21–29. Springer, Heidelberg, 2011.

  7. B. Andreianov and F. Bouhsiss. Uniqueness for an elliptic-parabolic problem with Neumann boundary condition. J. Evol. Equ., 4(2):273–295, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Andreianov, C. Cancès, and A. Moussa. A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. HAL: hal-01142499, 2015.

  9. O. Angelini, K. Brenner, and D. Hilhorst. A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation. Numer. Math., 123(2):219–257, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov. Boundary value problems in mechanics of nonhomogeneous fluids, volume 22 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1990. Translated from the Russian.

  11. J. Bear. Dynamic of Fluids in Porous Media. American Elsevier, New York, 1972.

    MATH  Google Scholar 

  12. J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84(3):375–393, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput., 37(2):A1111–A1138, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.-D. Benamou, G. Carlier, and M. Laborde. An augmented Lagrangian approach to Wasserstein gradient flows and applications. HAL: hal-01245184, 2015.

  15. J.-D. Benamou, G. Carlier, Q. Mérigot, and E. Oudet. Discretization of functionals involving the Monge-Ampère operator. Numer. Math., online first:1–26, 2015.

  16. M. Bessemoulin-Chatard. Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie. PhD thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012.

  17. M. Bessemoulin-Chatard and C. Chainais-Hillairet. Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems. HAL: hal-01250709, 2016.

  18. M. Bessemoulin-Chatard and F. Filbet. A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput., 34(5):B559–B583, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Blanchet. A gradient flow approach to the Keller-Segel systems. RIMS Kokyuroku’s lecture notes, vol. 1837, pp. 52–73, June 2013.

    Google Scholar 

  20. A. Blanchet, V. Calvez, and J. A. Carrillo. Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal., 46(2):691–721, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Bolley, I. Gentil, and A. Guillin. Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations. J. Funct. Anal., 263(8):2430–2457, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Bolley, I. Gentil, and A. Guillin. Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal., 208(2):429–445, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Brenner and C. Cancès. Improving Newton’s method performance by parametrization: the case of Richards equation. HAL: hal-01342386.

  24. K. Brenner, C. Cancès, and D. Hilhorst. Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci., 17(3):573–597, 2013.

    Article  MathSciNet  Google Scholar 

  25. K. Brenner, Groza M., C. Guichard, and R. Masson. Vertex approximate gradient scheme for hybrid dimensional two-phase Darcy flows in fractured porous media. ESAIM Math. Model. Numer. Anal., 49(2):303–330, 2015.

    Article  MathSciNet  Google Scholar 

  26. K. Brenner and R. Masson. Convergence of a vertex centered discretization of two-phase darcy flows on general meshes. Int. J. Finite Vol., 10:1–37, 2013.

    Google Scholar 

  27. E. Burman and A. Ern. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes. C. R. Acad. Sci. Paris Sér. I Math., 338(8):641–646, 2004.

  28. C. Cancès. Nonlinear parabolic equations with spatial discontinuities. NoDEA Nonlinear Differential Equations Appl., 15(4-5):427–456, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Cancès. Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities. M2AN Math. Model. Numer. Anal., 43:973–1001, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Cancès, M. Cathala, and C. Le Potier. Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numer. Math., 125(3):387–417, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Cancès and T. Gallouët. On the time continuity of entropy solutions. J. Evol. Equ., 11(1):43–55, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Cancès, T. O. Gallouët, and L. Monsaingeon. The gradient flow structure of immiscible incompressible two-phase flows in porous media. C. R. Acad. Sci. Paris Sér. I Math., 353:985–989, 2015.

    Article  MATH  Google Scholar 

  33. C. Cancès and C. Guichard. Entropy-diminishing CVFE scheme for solving anisotropic degenerate diffusion equations. In Finite volumes for complex applications. VII. Methods and theoretical aspects, volume 77 of Springer Proc. Math. Stat., pages 187–196. Springer, Cham, 2014.

  34. C. Cancès and C. Guichard. Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations. Math. Comp., 85(298):549–580, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Cancès and M. Pierre. An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM J. Math. Anal., 44(2):966–992, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani, and A. Unterreiter. Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math., 133(1):1–82, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Casado-Díaz, T. Chacón Rebollo, V. Girault, M. Gómez Mármol, and F. Murat. Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in \(L^1\). Numer. Math., 105(3):337–374, 2007.

    Article  MathSciNet  Google Scholar 

  38. C. Chainais-Hillairet. Entropy method and asymptotic behaviours of finite volume schemes. In Finite volumes for complex applications. VII. Methods and theoretical aspects, volume 77 of Springer Proc. Math. Stat., pages 17–35. Springer, Cham, 2014.

  39. C. Chainais-Hillairet, A. Jüngel, and S. Schuchnigg. Entropy-dissipative discretization of nonlinear diffusion equations and discrete Beckner inequalities. HAL : hal-00924282, 2014.

  40. P. G. Ciarlet. Basic error estimates for elliptic problems. Ciarlet, P. G. & Lions, J.-L. (ed.), in Handbook of numerical analysis. North-Holland, Amsterdam, pp. 17–351, 1991.

  41. K. Deimling. Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  42. C. Dellacherie and P.-A. Meyer. Probabilities and potential, volume 29 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam-New York, 1978.

  43. J. Dolbeault, B. Nazaret, and G. Savaré. A new class of transport distances between measures. Calc. Var. Partial Differential Equations, 34(2):193–231, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Droniou and Ch. Le Potier. Construction and convergence study of schemes preserving the elliptic local maximum principle. SIAM J. Numer. Anal., 49(2):459–490, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Erbar and J. Maas. Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst., 34(4):1355–1374, 2014.

    MathSciNet  MATH  Google Scholar 

  46. A. Ern and J.L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Series. Springer, New York, 2004.

  47. A. Ern, I. Mozolevski, and L. Schuh. Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Engrg., 199(23-24):1491–1501, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Eymard, P. Féron, T. Gallouët, C. Guichard, and R. Herbin. Gradient schemes for the stefan problem. Int. J. Finite Vol., 13:1–37, 2013.

    Google Scholar 

  49. R. Eymard, T. Gallouët, M. Ghilani, and R. Herbin. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal., 18(4):563–594, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  50. R. Eymard, T. Gallouët, C. Guichard, R. Herbin, and R. Masson. TP or not TP, that is the question. Comput. Geosci., 18:285–296, 2014.

    Article  MathSciNet  Google Scholar 

  51. R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Ciarlet, P. G. (ed.) et al., in Handbook of numerical analysis. North-Holland, Amsterdam, pp. 713–1020, 2000.

  52. R. Eymard, C. Guichard, and R. Herbin. Benchmark 3D: the VAG scheme. In J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, editors, Finite Volumes for Complex Applications VI Problems & Perspectives, volume 4 of Springer Proceedings in Mathematics, pages 1013–1022. Springer Berlin Heidelberg, 2011.

    Chapter  Google Scholar 

  53. R. Eymard, C. Guichard, and R. Herbin. Small-stencil 3D schemes for diffusive flows in porous media. ESAIM Math. Model. Numer. Anal., 46(2):265–290, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  54. R. Eymard, C. Guichard, R. Herbin, and R. Masson. Vertex-centred discretization of multiphase compositional Darcy flows on general meshes. Comput. Geosci., 16(4):987–1005, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  55. R. Eymard, C. Guichard, R. Herbin, and R. Masson. Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. ZAMM - J. of App. Math. and Mech., 94(7-8):560–585, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  56. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini. 3d benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite Volumes for Complex Applications VI Problems & Perspectives, Proceedings in Mathematics. Springer, 2011.

  57. R. Eymard, D. Hilhorst, and M. Vohralík. A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math., 105(1):73–131, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  58. R. Eymard, D. Hilhorst, and M. Vohralík. A combined finite volume-finite element scheme for the discretization of strongly nonlinear convection-diffusion-reaction problems on nonmatching grids. Numer. Methods Partial Differential Equations, 26(3):612–646, 2010.

    MathSciNet  MATH  Google Scholar 

  59. J. Fehrenbach and J.-M. Mirebeau. Sparse non-negative stencils for anisotropic diffusion. J. Math. Imaging Vision, 49(1):123–147, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  60. T. Gallouët and J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs—application to a turbulence model. Commun. Pure Appl. Anal., 11(6):2371–2391, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  61. R. Herbin and F. Hubert. Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In R. Eymard and J.-M. Herard, editors, Finite Volumes for Complex Applications V, pages 659–692. Wiley, 2008.

  62. H. Hoteit and A. Firoozabadi. Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Advances in Water Resources, 31(1):56–73, 2008.

    Article  Google Scholar 

  63. N. Igbida. Hele-Shaw type problems with dynamical boundary conditions. J. Math. Anal. Appl., 335(2):1061–1078, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Jordan, D. Kinderlehrer, and F. Otto. Free energy and the Fokker-Planck equation. Physica D: Nonlinear Phenomena, 107(2):265–271, 1997.

  65. R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29(1):1–17, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  66. I. Kapyrin. A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes. Dokl. Math., 76:734–738, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  67. E. F. Keller and L. A. Segel. Model for chemotaxis. Journal of Theoretical Biology, 30(2):225–234, 1971.

    Article  MATH  Google Scholar 

  68. D. Kinderlehrer, L. Monsaingeon, and X. Xu. A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations. arXiv:1501.04437, to appear in ESAIM: COCV.

  69. D. Kinderlehrer and N. J. Walkington. Approximation of parabolic equations using the Wasserstein metric. M2AN Math. Model. Numer. Anal., 33(4):837–852, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  70. P. Laurençot and B.-V. Matioc. A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differential Equations, 47(1-2):319–341, 2013.

  71. C. Le Potier. Correction non linéaire et principe du maximum pour la discrétisation d’opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles. C. R. Acad. Sci. Paris, 348:691–695, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  72. C. Le Potier. Correction non linéaire d’ordre 2 et principe du maximum pour la discrétisation d’opérateurs de diffusion. C. R. Math. Acad. Sci. Paris, 352(11):947–952, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  73. J. Leray and J. Schauder. Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. (3), 51:45–78, 1934.

    Article  MATH  Google Scholar 

  74. Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge university press, 2002.

  75. K. Lipnikov, D. Svyatskiy, and Y. Vassilevski. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys., 228(3):703–716, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  76. K. Lipnikov, D. Svyatskiy, and Y. Vassilevski. A monotone finite volume method for advection-diffusion equations on unstructured polygon meshes. J. Comput. Phys., 229(11):4017–4032, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  77. S. Lisini. Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces. ESAIM Control Optim. Calc. Var., 15(3):712–740, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  78. H. Liu and Z. Wang. A free energy satisfying finite difference method for Poisson-Nernst-Planck equations. J. Comput. Phys., 268:363–376, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  79. H. Liu and Z. Wang. An entropy satisfying discontinuous Galerkin method for nonlinear Fokker-Planck equations. arXiv:1601.02547, 2016.

  80. H. Liu and H. Yu. The entropy satisfying discontinuous Galerkin method for Fokker-Planck equations. J. Sci. Comput., 62:803–830, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  81. J. Maas. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261(8):2250–2292, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  82. D. Matthes and H. Osberger. Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation. ESAIM Math. Model. Numer. Anal., 48(3):697–726, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  83. D. Matthes and H. Osberger. A convergent Lagrangian discretization for a nonlinear fourth-order equation. Found. Comput. Math., online first:1–54, 2015.

  84. A. Mielke. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity, 24(4):1329–1346, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  85. F. Otto. \({L}^1\)-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differential Equations, 131:20–38, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  86. F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26(1-2):101–174, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  87. M. A. Peletier. Variational modelling: Energies, gradient flows, and large deviations. Lecture Notes, Würzburg. Available at http://www.win.tue.nl/~mpeletie, Feb. 2014.

  88. G. Peyré. Entropic Approximation of Wasserstein Gradient Flows. SIAM J. Imaging Sci., 8(4):2323–2351, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  89. F. A. Radu, I. S. Pop, and P. Knabner. Error estimates for a mixed finite element discretization of some degenerate parabolic equations. Numer. Math., 109(2):285–311, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  90. Z. Sheng and G. Yuan. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comput. Physics, 230(7):2588–2604, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  91. J. Simon. Compact sets in the space \(L^{p}(0,T;B)\). Ann. Mat. Pura Appl. (4), 146:65–96, 1987.

    MATH  Google Scholar 

  92. G. Yuan and Z. Sheng. Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys., 227(12):6288–6312, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  93. J. Zinsl and D. Matthes. Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis. Anal. PDE, 8(2):425–466, 2015.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments on the paper. They also warmly thank Flore Nabet and Thomas Rey for their precious feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Cancès.

Additional information

Communicated by Eitan Tadmor.

This work was supported by the French National Research Agency ANR (Project GeoPor, Grant ANR-13-JS01-0007-01).

Appendix: Some Lemmas Related to the VAG Discretization

Appendix: Some Lemmas Related to the VAG Discretization

This appendix gathers lemmas on some properties of the VAG discretization that are independent of the continuous problem (and thus of the scheme). In what follows, \(\mathcal {D}= (\mathcal {M},\mathcal {T})\) denote a discretization of \(\Omega \) as prescribed in Sect. 2.1.1, and \(\pi _\mathcal {T}, \pi _\mathcal {M}, \pi _\mathcal {D}\) and \(\varvec{\nabla }_\mathcal {T}\) are the corresponding reconstruction operators.

Lemma 6.1

For \(\kappa \in \mathcal {M}\), let \(\mathbf{A}_\kappa = \left( a^\kappa _{\mathrm{s},\mathrm{s}'} \right) _{\mathrm{s},\mathrm{s}' \in \mathcal {V}_\kappa } \) be the matrix defined by (34), then there exists C depending only on \({\varvec{\Lambda }}\), \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) (but not on \(\kappa \)) such that \(\mathrm{Cond} _2(\mathbf{A}_\kappa ) \le C\).

Proof

Following [26, Lemma 3.2], there exist \(C_1,C_2 >0\) depending only on \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) such that, for all \({\varvec{u}}\in W_\mathcal {D}\) and all \(\kappa \in \mathcal {M}\), one has

$$\begin{aligned} C_1 \frac{\mathrm{meas}(\kappa )}{(h_\kappa )^2} \sum _{\mathrm{s}\in \mathcal {V}_\kappa } \left( u_\mathrm{s}- u_\kappa \right) ^2 \le {\Vert \varvec{\nabla }_\mathcal {T}{\varvec{u}}\Vert } ^2_{L^2(\kappa )} \le C_2 \frac{\mathrm{meas}(\kappa )}{(h_\kappa )^2} \sum _{\mathrm{s}\in \mathcal {V}_\kappa } \left( u_\mathrm{s}- u_\kappa \right) ^2, \end{aligned}$$

where \(h_\kappa \) denotes the diameter of the cell \(\kappa \in \mathcal {M}\). As a consequence, one has

$$\begin{aligned} \lambda _\star C_1 \frac{\mathrm{meas}(\kappa )}{(h_\kappa )^2} |{\varvec{\delta }}_\kappa {\varvec{u}}|^2 \le {\varvec{\delta }}_\kappa {\varvec{u}}\cdot \mathbf{A}_\kappa {\varvec{\delta }}_\kappa {\varvec{u}}= \int _\kappa {\varvec{\Lambda }}\varvec{\nabla }_\mathcal {T}{\varvec{u}}\cdot \varvec{\nabla }_\mathcal {T}{\varvec{u}}\, \mathrm{d} {\varvec{x}}\le \lambda ^\star C_2 \frac{\mathrm{meas}(\kappa )}{(h_\kappa )^2} |{\varvec{\delta }}_\kappa {\varvec{u}}|^2. \end{aligned}$$

Since the application \({\varvec{\delta }}_\kappa : W_\mathcal {D}\rightarrow \mathbb {R}^{\ell _\kappa } \) is onto, we deduce that

$$\begin{aligned} \lambda _\star C_1 \frac{\mathrm{meas}(\kappa )}{(h_\kappa )^2} |{\varvec{v}}|^2 \le {\varvec{v}}\cdot \mathbf{A}_\kappa {\varvec{v}}\le \lambda ^\star C_2 \frac{\mathrm{meas}(\kappa )}{(h_\kappa )^2} |{\varvec{v}}|^2, \quad \forall {\varvec{v}}\in \mathbb {R}^{\ell _\kappa }, \end{aligned}$$

and thus that \( \mathrm{Cond} _2(\mathbf{A}_\kappa ) \le \frac{\lambda ^\star C_2}{\lambda _\star C_1}. \) \(\square \)

Lemma 6.2

There exists \(C\ge 1\) depending only on \({\varvec{\Lambda }}\), \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) such that, for all \(\kappa \in \mathcal {M}\) and all \({\varvec{v}}= {(v_\mathrm{s})} _{\mathrm{s}\in \mathcal {V}_\kappa } \in \mathbb {R}^{\ell _\kappa } \), one has

$$\begin{aligned} \sum _{\mathrm{s}\in \mathcal {V}_\kappa } \left( \sum _{\mathrm{s}' \in \mathcal {V}_\kappa } |a^\kappa _{\mathrm{s},\mathrm{s}'} |\right) \left( v_\mathrm{s}\right) ^2 \le C\; {\varvec{v}}\cdot \mathbf{A}_\kappa {\varvec{v}}. \end{aligned}$$

Proof

Denoting by \(\Vert \cdot \Vert _{q} \) the usual matrix q-norm, one has

$$\begin{aligned} \sum _{\mathrm{s}\in \mathcal {V}_\kappa } \left( \sum _{\mathrm{s}' \in \mathcal {V}_\kappa } |a^\kappa _{\mathrm{s},\mathrm{s}'} |\right) \left( v_\mathrm{s}\right) ^2 \le {\Vert \mathbf{A}_\kappa \Vert } _1 | {\varvec{v}}|^2. \end{aligned}$$

Since the dimension of the space \(\mathbb {R}^{\ell _\kappa } \) is bounded by \(\ell _\mathcal {D}\), there exists \(C_1\) depending only on \(\ell _\mathcal {D}\) such that \(\Vert \mathbf{A}_\kappa \Vert _1 \le C_1 \Vert \mathbf{A}_\kappa \Vert _2\), so that

$$\begin{aligned} \sum _{\mathrm{s}\in \mathcal {V}_\kappa } \left( \sum _{\mathrm{s}' \in \mathcal {V}_\kappa } |a^\kappa _{\mathrm{s},\mathrm{s}'} |\right) \left( v_\mathrm{s}\right) ^2 \le C_1 {\Vert \mathbf{A}_\kappa \Vert } _2 | {\varvec{v}}|^2. \end{aligned}$$
(120)

On the other hand, since \(\mathbf{A}_\kappa \) is symmetric definite and positive, one has

$$\begin{aligned} {\varvec{v}}\cdot \mathbf{A}_\kappa {\varvec{v}}\ge \frac{{\Vert \mathbf{A}_\kappa \Vert } _2}{\mathrm{Cond} _2(\mathbf{A}_\kappa )} |{\varvec{v}}|^2. \end{aligned}$$

Using Lemma 6.1, we obtain that there exists \(C_2>0\) depending only on \({\varvec{\Lambda }}\), \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) such that

$$\begin{aligned} {\varvec{v}}\cdot \mathbf{A}_\kappa {\varvec{v}}\ge C_2 {{\Vert \mathbf{A}_\kappa \Vert } _2} | {\varvec{v}}|^2. \end{aligned}$$
(121)

Putting (120) and (121) together, we conclude the proof of Lemma 6.2 by choosing \(C = \frac{C_1}{C_2} \). \(\square \)

Lemma 6.3

Let \(\kappa \in \mathcal {M}\) and \(\mathbf{A}_\kappa = (a^\kappa _{\mathrm{s},\mathrm{s}'})_{\mathrm{s},\mathrm{s}'\in \mathcal {V}_\kappa } \in \mathbb {R}^{\ell _\kappa \times \ell _\kappa } \) be the matrix defined by (34). Let \({\varvec{\mu }}_\kappa = \left( \mu _{\kappa ,\mathrm{s}} \right) _{\mathrm{s}\in \mathcal {V}_\kappa } \in \mathbb {R}^{\ell _\kappa } \) and \({\varvec{v}}\in W_\mathcal {D}\), then

$$\begin{aligned}&\sum _{\mathrm{s}\in \mathcal {V}_\kappa } \sum _{\mathrm{s}' \in \mathcal {V}_\kappa } (v_\mathrm{s}- v_\kappa ) \mu _{\kappa ,\mathrm{s}} a^\kappa _{\mathrm{s},\mathrm{s}'} \mu _{\kappa ,\mathrm{s}'} (v_{\mathrm{s}'} - v_\kappa ) \\&\quad \le \max _{\mathrm{s}\in \mathcal {V}_\kappa } (\mu _{\kappa ,\mathrm{s}})^2 \sum _{\mathrm{s}\in \mathcal {V}_\kappa } \left( \sum _{\mathrm{s}' \in \mathcal {V}_\kappa } |a^\kappa _{\mathrm{s},\mathrm{s}'} |\right) \left( v_\mathrm{s}- v_\kappa \right) ^2. \end{aligned}$$

Proof

Using \(ab \le \frac{a^2}{2} + \frac{b^2}{2}\), we obtain that

$$\begin{aligned}&\sum _{\mathrm{s}\in \mathcal {V}_\kappa } \sum _{\mathrm{s}' \in \mathcal {V}_\kappa } (v_\mathrm{s}- v_\kappa ) \mu _{\kappa ,\mathrm{s}} a^\kappa _{\mathrm{s},\mathrm{s}'} \mu _{\kappa ,\mathrm{s}'} (v_{\mathrm{s}'} - v_\kappa ) \\&\quad \le \max _{\mathrm{s}\in \mathcal {V}_\kappa } (\mu _{\kappa ,\mathrm{s}})^2\sum _{\mathrm{s}\in \mathcal {V}_\kappa } \sum _{\mathrm{s}' \in \mathcal {V}_\kappa } |v_\mathrm{s}- v_\kappa | |a^\kappa _{\mathrm{s},\mathrm{s}'} | |v_{\mathrm{s}'} - v_\kappa | \\&\quad \le \frac{\max _{\mathrm{s}\in \mathcal {V}_\kappa } (\mu _{\kappa ,\mathrm{s}})^2}{2}\sum _{\mathrm{s}\in \mathcal {V}_\kappa } \left( \sum _{\mathrm{s}' \in \mathcal {V}_\kappa } |a^\kappa _{\mathrm{s},\mathrm{s}'} |\right) (v_\mathrm{s}- v_\kappa )^2 \\&\qquad + \frac{\max _{\mathrm{s}\in \mathcal {V}_\kappa } (\mu _{\kappa ,\mathrm{s}})^2}{2}\sum _{\mathrm{s}' \in \mathcal {V}_\kappa } \left( \sum _{\mathrm{s}\in \mathcal {V}_\kappa } |a^\kappa _{\mathrm{s},\mathrm{s}'} |\right) (v_\mathrm{s}' - v_\kappa )^2. \end{aligned}$$

One concludes the proof of Lemma 6.3 by noticing that, since \(\mathbf{A}_\kappa \) is symmetric, the two terms in the right-hand side of the above inequality are equal. \(\square \)

Lemma 6.4

There exists C depending only on \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) such that

$$\begin{aligned} \mathrm{meas}(T) \le \mathrm{meas}(\kappa ) \le C \mathrm{meas}(T), \quad \forall \kappa \in \mathcal {M}, \; \forall T \in \mathcal {T}\text {with } T \subset \kappa . \end{aligned}$$

Proof

Let \(\kappa \in \mathcal {M}\), then there exist \(T_1, \ldots , T_{r} \) simplexes, with \(r=\ell _\kappa \) if \(d = 2\) and \(r = 2 \#\mathcal {E}_\kappa \) if \(d=3\), such that

$$\begin{aligned} \bigcup _{i=1} ^{r_\kappa } {\overline{T}}_i = {\overline{\kappa }}, \quad T_i \cap T_j = \emptyset \; \text {if } \; i \ne j. \end{aligned}$$

The Euler-Descartes theorem ensures that \(r \le 4 (\ell _\mathcal {D}- 1)\) if \(d=3\).

If \(T_i\) and \(T_j\) share a common edge, one gets that

$$\begin{aligned} \mathrm{meas}(T_i) \le \theta ^d \; \mathrm{meas}(T_j). \end{aligned}$$

Let \(i_0, i_1 \in \{1,\ldots , r_\kappa \} \) be arbitrary but different, we deduce from the previous inequality the following non-optimal estimate:

$$\begin{aligned} \mathrm{meas}(T_{i_0}) \le \theta ^{4(\ell _\mathcal {D}- 1) d} \; \mathrm{meas}(T_{i_1}). \end{aligned}$$

Let \(i_\mathrm{max} \) be such that \(\mathrm{meas}(T_{i_\mathrm{max} }) = \max _{1 \le i \le r} \mathrm{meas}(T_i)\), then

$$\begin{aligned} \mathrm{meas}(\kappa ) \le r \; \mathrm{meas}(T_{i_\mathrm{max} }) \le 4 (\ell _\mathcal {D}- 1) \theta ^{4(\ell _\mathcal {D}- 1) d} \mathrm{meas}(T_i), \quad \forall i \in \{1,\ldots , r\}. \end{aligned}$$

\(\square \)

We state now a slight generalization of [26, Lemma 3.4], where the same result is proven in the particular case \(q=2\). The straightforward adaptation of the proof given in [26] to the case \(q \ne 2\) is left to the reader.

Lemma 6.5

There exists C depending only on \(\ell _\mathcal {D}\) and \(\theta _\mathcal {T}\) defined in (24) and (21), respectively, such that, for all \({\varvec{v}}\in W_{\mathcal {D}}\) and all \(q \in [1,\infty ]\), one has

$$\begin{aligned} \left\| \pi _{\mathcal {D}} {\varvec{v}}- \pi _{\mathcal {T}} {\varvec{v}}\right\| _{L^q(\Omega )} + \left\| \pi _{\mathcal {D}} {\varvec{v}}- \pi _{\mathcal {M}} {\varvec{v}}\right\| _{L^q(\Omega )} \le C h_\mathcal {T}\left\| \varvec{\nabla }_{\mathcal {T}} {\varvec{v}}\right\| _{L^q(\Omega )}. \end{aligned}$$

Lemma 6.6

Let \(\mathcal {D}\) be a discretization of \(\Omega \) as introduced in Sect. 2.1.1 such that \(\zeta _\mathcal {D}>0\), then there exist \(C_1 >0\) depending only on q, \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) and \(C_2\) depending moreover on \(\zeta _\mathcal {D}\) such that

$$\begin{aligned} C_1 \Vert \pi _{\mathcal {D}} {\varvec{v}}\Vert _{L^q(\Omega )} \le \Vert \pi _{\mathcal {T}} {\varvec{v}}\Vert _{L^q(\Omega )} \le C_2 \Vert \pi _{\mathcal {D}} {\varvec{v}}\Vert _{L^q(\Omega )}, \quad \forall {\varvec{v}}\in W_{\mathcal {D}}. \end{aligned}$$
(122)

Proof

Let \({\widehat{T}}\) be a reference tetrahedron, and let \({\widehat{v}}: {\widehat{T}} \rightarrow \mathbb {R}\) be an affine function with nodal values \(v_i\), \(i \in \{1,\ldots , 4\} \), then for all \(q>0\), there exists C depending on q such that

$$\begin{aligned} \frac{1}{C} \sum _{i = 1} ^4 |v_i|^q \le \Vert {\widehat{v}} \Vert _{L^q({\widehat{T}})} ^q \le C \sum _{i = 1} ^4 |v_i|^q. \end{aligned}$$

Therefore, using classical properties of the affine change of variable between simplexes, one gets the existence of C depending only on q, \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) such that, for all \({\varvec{v}}\in W_{\mathcal {D}} \),

$$\begin{aligned}&\frac{1}{C} \sum _{\kappa \in \mathcal {M}} \mathrm{meas}(\kappa ) \left( |v_\kappa |^q + \sum _{\mathrm{s}\in \mathcal {V}_\kappa } | v_\mathrm{s}|^q \right) \nonumber \\&\quad \le \Vert \pi _{\mathcal {T}} {\varvec{v}}\Vert _{L^q(\Omega )} ^q \le C \sum _{\kappa \in \mathcal {M}} \mathrm{meas}(\kappa ) \left( |v_\kappa |^q + \sum _{\mathrm{s}\in \mathcal {V}_\kappa } | v_\mathrm{s}|^q \right) . \end{aligned}$$
(123)

On the other hand, one has

$$\begin{aligned} \Vert \pi _{\mathcal {D}} {\varvec{v}}\Vert _{L^q(\Omega )} ^q = \sum _{\kappa \in \mathcal {M}} m_\kappa |v_\kappa |^q + \sum _{\mathrm{s}\in \mathcal {V}} m_\mathrm{s}|v_\mathrm{s}|^q. \end{aligned}$$

A classical geometrical property and (29) yield

$$\begin{aligned} m_\kappa \le \mathrm{meas}(\kappa ) = d \int _{\Omega } \pi _\mathcal {T}\mathbf{e}_{\kappa } ({\varvec{x}}) \mathrm{d} {\varvec{x}}\le \frac{d}{\zeta _\mathcal {D}} m_\kappa \quad \forall \kappa \in \mathcal {M}, \end{aligned}$$
(124)

and similarly

$$\begin{aligned} m_\mathrm{s}\le d \int _{\Omega } \pi _\mathcal {T}\mathbf{e}_{\mathrm{s}} ({\varvec{x}}) \mathrm{d} {\varvec{x}}\le \frac{d}{\zeta _\mathcal {D}} m_\mathrm{s}, \quad \; \forall \mathrm{s}\in \mathcal {V}. \end{aligned}$$

Notice now that the following geometrical identity holds:

$$\begin{aligned} d \int _{\Omega } \pi _\mathcal {T}\mathbf{e}_{\mathrm{s}} ({\varvec{x}}) \mathrm{d} {\varvec{x}}= \sum _{\begin{array}{c} T \in \mathcal {T}\\ {\varvec{x}}_\mathrm{s}\in \partial T \end{array} } \mathrm{meas}(T), \quad \forall \mathrm{s}\in \mathcal {V}. \end{aligned}$$

Lemma 6.4 yields the existence of \(C>0\) depending on \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) such that

$$\begin{aligned} \frac{1}{C} \sum _{\kappa \in \mathcal {M}_\mathrm{s}} \mathrm{meas}(\kappa ) \le d \int _{\Omega } \pi _\mathcal {T}\mathbf{e}_{\mathrm{s}} ({\varvec{x}}) \mathrm{d} {\varvec{x}}\le \sum _{\kappa \in \mathcal {M}_\mathrm{s}} \mathrm{meas}(\kappa ), \quad \forall \mathrm{s}\in \mathcal {V}, \end{aligned}$$

and the result of Lemma 6.6 follows. \(\square \)

Lemma 6.7

Let \(\mathcal {D}\) be a discretization of \(\Omega \) as introduced in Sect. 2.1.1 such that \(\zeta _\mathcal {D}>0\), then, for all \(q \in [1,\infty ]\), one has

$$\begin{aligned} \left\| \pi _{\mathcal {M}} {\varvec{v}}\right\| _{L^q(\Omega )} \le \left( \frac{d}{\zeta _\mathcal {D}} \right) ^{1/q} \left\| \pi _{\mathcal {D}} {\varvec{v}}\right\| _{L^q(\Omega )}, \quad \forall {\varvec{v}}\in W_{\mathcal {D}}. \end{aligned}$$

Proof

Let \({\varvec{v}}= \left( v_\kappa , v_\mathrm{s}\right) _{\kappa \in \mathcal {M}, \mathrm{s}\in \mathcal {V}} \in W_{\mathcal {D}},\) then it follows from (124) that

$$\begin{aligned} \left\| \pi _{\mathcal {M}} {\varvec{v}}\right\| _{L^q(\Omega )} ^q&= \sum _{\kappa \in \mathcal {M}} \mathrm{meas}(\kappa ) \left| v_\kappa \right| ^q \\&\le \left( \frac{d}{\zeta _\mathcal {D}} \right) \sum _{\kappa \in \mathcal {M}} m_\kappa \left| v_\kappa \right| ^q \le \left( \frac{d}{\zeta _\mathcal {D}} \right) \left\| \pi _{\mathcal {D}} {\varvec{v}}\right\| _{L^q(\Omega )} ^q. \end{aligned}$$

Lemma 6.8

Let \({\varvec{v}}= {(v_\kappa , v_\mathrm{s})} _{\kappa ,\mathrm{s}} \in W_\mathcal {D}\) be such that \(v_\beta \ge 0\) for all \(\beta \in \mathcal {M}\cup \mathcal {V}\), and define \({\overline{{\varvec{v}}}}= {({\overline{v}}_\kappa , {\overline{v}}_\mathrm{s})} _{\kappa ,\mathrm{s}} \in W_\mathcal {D}\) by

$$\begin{aligned} {\overline{v}}_\mathrm{s}= 0, \quad {\overline{v}}_\kappa = \max \left( v_\kappa , \max _{\mathrm{s}' \in \mathcal {V}_\kappa } v_{\mathrm{s}'} \right) , \quad \forall \mathrm{s}\in \mathcal {V}, \forall \kappa \in \mathcal {M}. \end{aligned}$$

Then there exists C depending only on \(\theta _\mathcal {T}\), \(\ell _\mathcal {D}\) and \(\zeta _\mathcal {D}\) such that

$$\begin{aligned} \left\| \pi _\mathcal {M}{\overline{{\varvec{v}}}}\right\| _{L^1(\Omega )} \le C \left\| \pi _\mathcal {D}{\varvec{v}}\right\| _{L^1(\Omega )}. \end{aligned}$$

Proof

Let \({\varvec{v}}\in W_\mathcal {D}\) be a vector with positives coordinates, and let \({\overline{{\varvec{v}}}}\) be constructed as above. It follows from the construction of \({\overline{{\varvec{v}}}}\) that

$$\begin{aligned} {\overline{v}}_\kappa \le v_\kappa + \sum _{\mathrm{s}\in \mathcal {V}_\kappa } v_\mathrm{s}, \quad \forall \kappa \in \mathcal {M}, \end{aligned}$$

whence, applying (123) with \(q=1\), one gets

$$\begin{aligned} \Vert \pi _\mathcal {M}{\overline{{\varvec{v}}}}\Vert _{L^1(\Omega )} \le C \Vert \pi _\mathcal {T}{\varvec{v}}\Vert _{L^1(\Omega )}. \end{aligned}$$

The result now directly follows from Lemma 6.6. \(\square \)

Lemma 6.9

Let \({\varvec{u}}= (u_\kappa , u_\mathrm{s})_{\kappa \in \mathcal {M}, \mathrm{s}\in \mathcal {V}} \in W_\mathcal {D}\), then for all \(\kappa \in \mathcal {M}\), we define \({\overline{{\varvec{\delta }}}}{\varvec{u}}= \left( {\overline{\delta }}_\kappa {\varvec{u}}, {\overline{\delta }}_\mathrm{s}{\varvec{u}}\right) _{\kappa \in \mathcal {M}, \mathrm{s}\in \mathcal {V}} \in W_\mathcal {D}\) by

$$\begin{aligned} {\overline{\delta }}_\mathrm{s}{\varvec{u}}= 0 \quad \text {and } \quad {\overline{\delta }}_\kappa {\varvec{u}}= \max _{\mathrm{s}' \in \mathcal {V}_\kappa } | u_\kappa - u_\mathrm{s}|, \quad \forall \kappa \in \mathcal {M}, \; \forall \mathrm{s}\in \mathcal {V}, \end{aligned}$$

then, for all \(q \in [1,\infty ]\), there exists C depending only on q, \(\theta _\mathcal {T}\), and \(\ell _\mathcal {D}\) such that

$$\begin{aligned} \left\| \pi _\mathcal {M}{\overline{{\varvec{\delta }}}}{\varvec{u}}\right\| _{L^q(\Omega )} \le C h_\mathcal {T}\Vert \varvec{\nabla }_\mathcal {T}{\varvec{u}}\Vert _{L^q(\Omega )}. \end{aligned}$$
(125)

Proof

Let \(\kappa \in \mathcal {M}\) and \(\mathrm{s}\in \mathcal {V}_\kappa \), then there exists a simplicial subelement \(T \in \mathcal {T}\) of \(\kappa \in \mathcal {M}\) such that \({\varvec{x}}_\kappa \) and \({\varvec{x}}_\mathrm{s}\) are vertices of T. Then it follows from classical finite element arguments (see, e.g. [40, 46]) that

$$\begin{aligned} \mathrm{meas}(T)^{1/q} |u_\kappa - u_\mathrm{s}| \le c \frac{\left( h_T\right) ^2}{\rho _T} \Vert \varvec{\nabla }_\mathcal {T}{\varvec{u}}\Vert _{L^q(T)} \le C h_\mathcal {T}\Vert \varvec{\nabla }_\mathcal {T}{\varvec{u}}\Vert _{L^q(\kappa )}, \end{aligned}$$

where c depends only on the dimension d and on q, while C depends additionally on \(\theta _\mathcal {T}\). Thanks to Lemma 6.4, we get the existence of C depending on d, q, \(\theta _\mathcal {T}\) and \(\ell _\mathcal {D}\) such that,

$$\begin{aligned} \mathrm{meas}(\kappa )^{1/q} |u_\kappa - u_\mathrm{s}| \le C h_\mathcal {T}\left\| \varvec{\nabla }_\mathcal {T}{\varvec{u}}\right\| _{L^q(\kappa )}, \quad \forall \kappa \in \mathcal {M}, \; \forall \mathrm{s}\in \mathcal {V}_\kappa . \end{aligned}$$

Summing over \(\kappa \in \mathcal {M}\) provides that (125) holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancès, C., Guichard, C. Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure. Found Comput Math 17, 1525–1584 (2017). https://doi.org/10.1007/s10208-016-9328-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-016-9328-6

Keywords

Mathematics Subject Classification

Navigation