Skip to main content
Log in

TP or not TP, that is the question

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We give here a comparative study on the mathematical analysis of two (classes of) discretization schemes for the computation of approximate solutions to incompressible two-phase flow problems in homogeneous porous media. The first scheme is the well-known finite volume scheme with a two-point flux approximation, classically used in industry. The second class contains the so-called approximate gradient schemes, which include finite elements with mass lumping, mixed finite elements, and mimetic finite differences. Both (classes of) schemes are nonconforming and can be expressed using discrete function and gradient reconstructions within a variational formulation. Each class has its specific advantages and drawbacks: monotony properties are natural with the two-point finite volume scheme, but meshes are restricted due to consistency issues; on the contrary, gradient schemes can be used on general meshes, but monotony properties are difficult to obtain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: derivation of the methods. SIAM J. Sci. Comp. 19, 1700–1716 (1998)

    Article  Google Scholar 

  2. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983)

    Article  Google Scholar 

  3. Brenner, K.: Hybrid finite volume scheme for a two-phase flow in heterogeneous porous media. ESAIM: Proc. 35, 210–215 (2012). http://hal.archives-ouvertes.fr/hal-00680686

  4. Brenner, K., Cances, C., Hilhorst, D.: A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field:Finite Volumes for Complex Applications VI Problems & Perspectives, pp. 185–193. Springer, Berlin (2011)

    Chapter  Google Scholar 

  5. Brenner, K., Masson, R.: Convergence of a vertex centred discretization of two-phase Darcy flows on general meshes. Int. J. Finite 10, 1–37 (2013) http://hal.archives-ouvertes.fr/hal-00755072

    Google Scholar 

  6. Chavent, G., Jaffré, J.: Mathematical Models and Finite Elements for Reservoir Simulation. Elsevier, Amsterdam (1986)

    Google Scholar 

  7. Droniou, J., Eymard, R., Gallouet, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. (M3AS) 23(13), 2395–2432 (2013) http://hal.archives-ouvertes.fr/hal-00751551

    Article  Google Scholar 

  8. Droniou, J., Gallouët, T., Herbin, R.: A finite volume scheme for a noncoercive elliptic equation with measure data. SIAM J. Numer. Anal. 41(6), 1997–2031 (2003). doi:10.1137/S0036142902405205

    Article  Google Scholar 

  9. Eymard, R., Féron, P., Gallouet, T., Herbin, R., Guichard, C.: Gradient schemes for the Stefan problem. Int. J Finite Volumes 10 special (2013) http://hal.archives-ouvertes.fr/hal-00751555

  10. Eymard, R., Gallouët, T., Herbin, R.: Techniques of Scientific Computing. Part III, Handbook of Numerical Analysis Ciarlet, P.G., Lions, J.L. (eds.), Vol. VII. North-Holland, Amsterdam (2000)

  11. Eymard, R., Gallouët, T., Herbin, R., Michel, A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92(1), 41–82 (2002)

    Article  Google Scholar 

  12. Eymard, R., Guichard, C., Herbin, R.: Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: Math. Model. Numer. Anal. 46(02), 265–290 (2012)

    Article  Google Scholar 

  13. Eymard, R., Henry, G., Herbin, R., Hubert, F., Klöfkorn, R., Manzini, G.: 3d benchmark on discretization schemes for anisotropic diffusion problems on general grids. Finite Vol. Complex Appl. VI Probl. Perspect. 895–930 (2011)

  14. Eymard, R., Herbin, R., Latché, J.C.: Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2 or 3D meshes. SIAM J. Numer. Anal. 45(1), 1–36 (2007)

    Article  Google Scholar 

  15. Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. M2AN Math. Model. Numer. Anal. 37(6), 937–972 (2003)

    Article  Google Scholar 

  16. Eymard, R., Schleper, V.: Study of a numerical scheme for miscible two-phase flow in porous media. Numer. Methods Partial Differ. Equ. (2013). doi:10.1002/num.21823

  17. Gallouët, T., Herbin, R.: Convergence of linear finite elements for diffusion equations with measure data. Comptes Rendus Mathematique 338(1), 81–84 (2004)

    Article  Google Scholar 

  18. Herbin, R., Hubert, F., et al.: Finite Volume Complex Applications V, pp. 659–692 (2008)

  19. Le Potier, C.: A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. Int. J. Finite 6(2), 20 (2009)

    Google Scholar 

  20. Le Potier, C., Mahamane, A.: A nonlinear correction and maximum principle for diffusion operators with hybrid schemes. CR Acad. Sci. Paris, Ser. I 350, 101–106 (2012)

    Article  Google Scholar 

  21. Michel, A.: A finite volume scheme for two-phase immiscible flow in porous media. SIAM J. Numer. Anal. 41(4), 1301–1317 (2003). doi:10.1137/S0036142900382739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eymard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eymard, R., Gallouët, T., Guichard, C. et al. TP or not TP, that is the question. Comput Geosci 18, 285–296 (2014). https://doi.org/10.1007/s10596-013-9392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9392-9

Keywords

Navigation