Skip to main content

Advertisement

Log in

Characterisation of AmphiAmR4, an amphioxus (Branchiostoma floridae) α2-adrenergic-like G-protein-coupled receptor

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Little is known about the evolutionary relationship between vertebrate adrenergic receptors and invertebrate octopamine and tyramine receptors. The complexity of the adrenergic signalling system is believed to be an innovation of the vertebrate lineage but the presence of noradrenaline has been reported in some invertebrate species. The cephalochordate, amphioxus (Branchiostoma floridae), is an ideal model organism for studying the evolution of vertebrate GPCRs, given its unique position at the base of the chordate lineage. Here, we describe the pharmacological characterisation and second messenger coupling abilities of AmphiAmR4, which clusters with α2-adrenergic receptors in a phylogenetic tree but also shares a high sequence similarity to invertebrate octopamine/tyramine receptors in both BLAST and Hidden Markov Model analyses. Thus, it was of particular interest to determine if AmphiAmR4 displayed similar functional properties to the vertebrate α2-adrenergic receptors or to invertebrate octopamine or tyramine receptors. When stably expressed in Chinese hamster ovary (CHO) cells, noradrenaline couples the receptor to both the activation of adenylyl cyclase and to the activation of the MAPKinase pathway. Pharmacological studies with a wide range of agonists and antagonists suggest that AmphiAmR4 functions as an α2-adrenergic-like receptor when expressed in CHO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHO:

Chinese hamster ovary

D-PBS:

Dulbecco’s phosphate-buffered saline

ERK:

Extracellular signal-related kinase

FBS:

Foetal bovine serum

GFP:

Green fluorescent protein

GPCR:

G-protein-coupled receptor

5-HT:

5-Hydroxytryptamine

IBMX:

3-Isobutyl methyl xanthine

MAPK:

Mitogen-activated protein kinase

ORF:

Open reading frame

TM:

Transmembrane domain

References

  • Airriess CN, Rudling JE, Midgley JM, Evans PD (1997) Selective inhibition of adenylyl cyclase by octopamine via a human cloned α2A-adrenoceptor. Brit J Pharmacol 122:191–198

    Article  CAS  Google Scholar 

  • Arakawa S, Gocayne JD, McCombie WR, Urquhart DA, Hall LM, Fraser CM, Venter JC (1990) Cloning, localization, and permanent expression of a Drosophila octopamine receptor. Neuron 4:343–354

    Article  PubMed  CAS  Google Scholar 

  • Arthur JM, Casanas SJ, Raymond JR (1993) Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptors. Biochem Pharmacol 45:2337–2341

    Article  PubMed  CAS  Google Scholar 

  • Baker JG, Hill SJ (2007) Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates. Trends Pharmacol Sci 28:374–381

    Article  PubMed  CAS  Google Scholar 

  • Baker JG, Hall IP, Hill SJ (2003) Agonist and inverse agonist actions of β-Blockers at the human β2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol 64:1357–1369

    Article  PubMed  CAS  Google Scholar 

  • Balmanno K, Cook SJ (1999) Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18:3085–3097

    Article  PubMed  CAS  Google Scholar 

  • Berry M (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90:257–271

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burman C (2008) The identification and characterisation of aminergic G-protein coupled receptors from amphioxus. PhD Thesis, University of Cambridge, Cambridge, p 326

  • Burman C, Evans P (2010) Amphioxus expresses both vertebrate-type and invertebrate-type dopamine D1 receptors. Invert Neurosci 10:93–105

    Article  PubMed  CAS  Google Scholar 

  • Burman C, Maqueira B, Coadwell J, Evans P (2007) Eleven new putative aminergic G-protein coupled receptors from Amphioxus (Branchiostoma floridae): identification, sequence analysis and phylogenetic relationship. Invert Neurosci 7:87–98

    Article  PubMed  CAS  Google Scholar 

  • Burman C, Reale V, Srivastava DP, Evans PD (2009) Identification and characterization of a novel amphioxus dopamine D1-like receptor. J Neurochem 111:26–36

    Article  PubMed  CAS  Google Scholar 

  • Bylund DB (1988) Sub types of α2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 9:356–361

    Article  PubMed  CAS  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) International union of pharmacology nomenclature of adrenoceptors. Pharmacol Revs 46:121–136

    CAS  Google Scholar 

  • Cazzamali G, Klaerke DA, Grimmelikhuijzen CJP (2005) A new family of insect tyramine receptors. Biochem Biophys Res Comm 338:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Yang H, Xu B, Wang F, Liu B (2008) Catecholaminergic responses to environmental stress in the hemolymph of zhikong scallop Chlamys farreri. J Exp Zool Part A: Ecological Genetics and Physiology 309A:289–296

    Article  CAS  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3 K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ (1997) Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. J Biol Chem 272:19125–19132

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  PubMed  CAS  Google Scholar 

  • Docherty JR (1998) Subtypes of functional α1- and α2-adrenoceptors. Eur J Pharmacol 361:1–15

    Article  PubMed  CAS  Google Scholar 

  • Eason M, Kurose H, Holt B, Raymond J, Liggett SB (1992) Simultaneous coupling of α2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of α2C10, α2C4, and α2C2 adrenergic receptors to Gi and Gs. J Biol Chem 267:15795–15801

    PubMed  CAS  Google Scholar 

  • Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15:317–473

    Article  CAS  Google Scholar 

  • Evans P, Maqueira B (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5:111–118

    Article  PubMed  CAS  Google Scholar 

  • Evans PD, Robb S, Cheek TR, Reale V, Hannan FL, Swales LS, Hall LM, Midgley JM (1995) Agonist-specific coupling of G-protein-coupled receptors to second-messenger systems. Prog Brain Res 106:259–268

    Article  PubMed  CAS  Google Scholar 

  • Flordellis C, Berguerand M, Gouache P, Barbu V, Gavras H, Handy D, Béréziat G, Masliah J (1995) Adrenergic receptor subtypes expressed in Chinese hamster ovary cells activate differentially mitogen-activated protein kinase by a p21 independent pathway. J Biol Chem 270:3491–3494

    Article  PubMed  CAS  Google Scholar 

  • George S, Bungay P, Naylor L (1997) Functional coupling of endogenous serotonin (5-HT1B) and calcitonin (C1a) receptors in CHO cells to a cyclic AMP-responsive luciferase reporter gene. J Neurochem 69:1278–1285

    Article  PubMed  CAS  Google Scholar 

  • Glaizer B (1968) Pharmacological mapping of cells in the suboesophageal ganglia of Helix aspersa. In: Salanki J (ed) Symposium on neurobiol of inverts. Plenum Press, New York, pp 267–284

  • Goldsmith Z, Dhanasekaran D (2007) G protein regulation of MAPK networks. Oncogene 26:3122–3142

    Article  PubMed  CAS  Google Scholar 

  • Gyires K, Zádori ZS, Török T, Mátyus P (2009) alpha(2)-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int 55:447–453

    Article  PubMed  CAS  Google Scholar 

  • Han K-A, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18:3650–3658

    PubMed  CAS  Google Scholar 

  • Harris TE, Persaud SJ, Jones PM (1996) Atypical isoforms of PKC and insulin secretion from pancreatic β-cells: evidence using Gö 6976 and Ro 31–8220 as PKC inhibitors. Biochem Biophys Res Comm 227:672–676

    Article  PubMed  CAS  Google Scholar 

  • Hawes BE, Luttrell LM, van Biesen T, Lefkowitz RJ (1996) Phosphatidylinositol 3-Kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem 271:12133–12136

    Article  PubMed  CAS  Google Scholar 

  • Hirai T, Chida K (2003) Protein kinase Cζ (PKCζ): activation mechanisms and cellular functions. J Biochem 133:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hoffman BB, Lefkowitz RJ (1980) [3H]WB4101–Caution about its role as an α-adrenergic subtype selective radioligand. Biochem Pharmacol 29:1537–1541

    Article  PubMed  CAS  Google Scholar 

  • Hsieh SL, Chen SM, Yang YH, Kuo CM (2006) Involvement of norepinephrine in the hyperglycemic responses of the freshwater giant prawn, Macrobrachium rosenbergii, under cold shock. Comp Biochem Physiol Part A Mol Integ Physiol 143:254–263

    Article  CAS  Google Scholar 

  • Huang J, Ohta H, Inoue N, Takao H, Kita T, Ozoe F, Ozoe Y (2009) Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochem Mol Biol 39:842–849

    Article  PubMed  CAS  Google Scholar 

  • Insel PA, Ostrom RS (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell Mol Neurobiol 23:305–314

    Google Scholar 

  • Jasper JR, Lesnick JD, Chang LK, Yamanishi SS, Chang TK, Hsu SAO, Daunt DA, Bonhaus DW, Eglen RM (1998) Ligand efficacy and potency at recombinant α2-adrenergic receptors: agonist-mediated [35s]GTPγs binding. Biochem Pharmacol 55:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (1995) Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci 16:232–238

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Yoshida M, Morisawa M (2003) Interaction between noradrenaline or adrenaline and the β1-adrenergic receptor in the nervous system triggers early metamorphosis of larvae in the ascidian, Ciona savignyi. Dev Biol 258:129–140

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko M, Rönnstrand L, Heldin C-H, Loubtchenkov M, Gazit A, Levitzki A, Böhmer FD (1997) Phosphorylation Site-Specific Inhibition of Platelet-Derived Growth Factor β-Receptor Autophosphorylation by the Receptor Blocking Tyrphostin AG1296. Biochem 36:6260–6269

    Article  CAS  Google Scholar 

  • Kukkonen JP, Renvaktar A, Shariatmadari R, Åkerman KEO (1998) Ligand- and subtype-selective coupling of human a2—adrenoceptors to Ca++ elevation in Chinese hamster ovary cells. J Pharmacol Exp Therap 287:667–671

    CAS  Google Scholar 

  • Lacoste A, De Cian M-C, Cueff A, Poulet SA (2001) Noradrenaline and α-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells. J Cell Sci 114:3557–3564

    PubMed  CAS  Google Scholar 

  • Li L, Zhou Y, Wang C, Zhao Y-L, Zhang Z-G, Fan D, Cui X-B, Wu L–L (2010) Src tyrosine kinase regulates angiotensin II-induced protein kinase Czeta activation and proliferation in vascular smooth muscle cells. Peptides 31:1159–1164

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, Kenakin TP (2011) Refining efficacy: allosterism and bias in G protein-coupled receptor signaling. Methods Mol Biol 756:3–35

    Article  PubMed  CAS  Google Scholar 

  • Luttrell DK, Luttrell LM (2004) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23:7969–7978

    Article  PubMed  CAS  Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560

    Article  PubMed  CAS  Google Scholar 

  • Michaelidis B, Loumbourdis NS, Kapaki E (2002) Analysis of monoamines, adenosine and GABA in tissues of the land snail Helix lucorum and lizard Agama stellio stellio during hibernation. J Exp Biol 205:1135–1143

    PubMed  CAS  Google Scholar 

  • Michel AD, Chessell IP, Hibell AD, Simon J, Humphrey PP (1998) Identification and characterization of an endogenous P2X7 (P2Z) receptor in CHO-K1 cells. Brit J Pharmacol 125:1194–1201

    Article  CAS  Google Scholar 

  • Moret F, Guilland JC, Coudouel S, Rochette L, Vernier P (2004) Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates. J Comp Neurol 468:135–150

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom KJ, Fredriksson R, Schioth HB (2008) The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors. BMC Evol Biol 8:9

    Article  PubMed  Google Scholar 

  • Osherov N, Levitzki A (1994) Epidermal-growth-factor-dependent activation of the Src-family kinases. Eur J Biochem 225:1047–1053

    Article  PubMed  CAS  Google Scholar 

  • Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066

    Article  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J 13:1325–1330

    PubMed  CAS  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Ann Rev Entomol 50:447–477

    Article  CAS  Google Scholar 

  • Ruuskanen JO, Xhaard H, Marjamaki A, Salaneck E, Salminen T, Yan Y-L, Postlethwait JH, Johnson MS, Larhammar D, Scheinin M (2004) Identification of duplicated fourth α2-adrenergic receptor subtype by cloning and mapping of five receptor genes in Zebrafish. Mol Biol Evol 21:14–28

    Article  PubMed  CAS  Google Scholar 

  • Shah BH, Catt KJ (2004) GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci 27:48–53

    Article  PubMed  CAS  Google Scholar 

  • Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neurosci 25:6145–6155

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SF (2008) Structural basis of protein Kinase C isoform function. Physiol Revs 88:1341–1378

    Article  CAS  Google Scholar 

  • Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT (1994) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell 77:83–93

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Yang L, Feldman RI, Sun X-m, Bhalla KN, Jove R, Nicosia SV, Cheng JQ (2003) Activation of phosphatidylinositol 3-Kinase/Akt pathway by Androgen through Interaction of p85α, Androgen Receptor, and Src. J Biol Chem 278:42992–43000

    Article  PubMed  CAS  Google Scholar 

  • Swatton JE, Sellers LA, Faull RL, Holland A, Iritani S, Bahn S (2004) Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur J Neurosci 19:2711–2719

    Article  PubMed  Google Scholar 

  • Thandi S, Blank JL, Challiss RAJ (2002) Group-I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to extracellular signal-regulated kinase (ERK) activation via distinct, but overlapping, signalling pathways. J Neurochem 83:1139–1153

    Article  PubMed  CAS  Google Scholar 

  • Walker S, Cunniffe N, Bootman M, Roderick L (2008) Dynamic imaging of calcium and STIM1 in the same cell using wide-field and TIRF microscopy. Biotechniques 45:347–348

    Article  PubMed  CAS  Google Scholar 

  • Yang K-J, Shin S, Piao L, Shin E, Li Y, Park KA, Byun HS, Won M, Hong J, Kweon GR, Hur GM, Seok JH, Chun T, Brazil DP, Hemmings BA, Park J (2008) Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J Biol Chem 283:1480–1491

    Article  PubMed  CAS  Google Scholar 

  • Zhang W-P, Ouyang M, Thomas SA (2004) Potency of catecholamines and other -tyrosine derivatives at the cloned mouse adrenergic receptors. Neuropharmacol 47:438–449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BBSRC through the Babraham Institute and by a BBSRC Studentship to AB. We thank Dr. Mikhail Matz, Whitney Laboratory, University of Florida, St. Augustine, USA for kindly supplying us with the amphioxus cDNA libraries used in this study.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Evans.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 559 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayliss, A., Evans, P.D. Characterisation of AmphiAmR4, an amphioxus (Branchiostoma floridae) α2-adrenergic-like G-protein-coupled receptor. Invert Neurosci 13, 71–84 (2013). https://doi.org/10.1007/s10158-012-0145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-012-0145-6

Keywords

Navigation