Skip to main content
Log in

Eleven new putative aminergic G-protein coupled receptors from Amphioxus (Branchiostoma floridae): identification, sequence analysis and phylogenetic relationship

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

We have identified eleven novel aminergic-like G-protein coupled receptor (GPCRs) sequences (named AmphiAmR1-11) by searching the genomic trace sequence database for the amphioxus species, Branchiostoma floridae. They share many of the structural motifs that have been used to characterize vertebrate and invertebrate aminergic GPCRs. A preliminary classification of these receptors has been carried out using both BLAST and Hidden Markov Model analyses. The amphioxus genome appears to express a number of D1-like dopamine receptor sequences, including one related to insect dopamine receptors. It also expresses a number of receptors that resemble invertebrate octopamine/tyramine receptors and others that resemble vertebrate α-adrenergic receptors. Amphioxus also expresses receptors that resemble vertebrate histamine receptors. Several of the novel receptor sequences have been identified in amphioxus cDNA libraries from a number of tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Airriess CN, Rudling JE, Midgley JM, Evans PD (1997) Selective inhibition of adenylyl cyclase by octopamine via a human cloned α2A-adrenoceptor. Brit J Pharmacol 122:191–198

    Article  CAS  Google Scholar 

  • Balfanz S, Strünker T, Frings S, Baumann A (2005) A family of octapamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 93:440–451

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros JA, Weinstein WH (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  • Bargmann CI (1998) The neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033

    Article  PubMed  CAS  Google Scholar 

  • Beggs KT, Hamilton IS, Kurshan PT, Mustard JA, Mercer AR (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honeybee. Apis mellifera. Insect Biochem Mol Biol 35:873–882

    Article  PubMed  CAS  Google Scholar 

  • Blenau W, Balfanz S, Baumann A (2000) Am tyr1. Characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J Neurochem 74:900–908

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G-protein coupled receptors: an evolutionary success. EMBO J 18:1723–1729

    Article  PubMed  CAS  Google Scholar 

  • Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G-protein coupled receptors. Proc Natl Acad Sci USA 98:8966–8971

    Article  PubMed  CAS  Google Scholar 

  • Brody T, Cravchik A (2000) Drosophila melanogaster G-protein coupled receptors. J Cell Biol 150:F83–F88

    Article  PubMed  CAS  Google Scholar 

  • Callier S, Snapyan M, Le Crom S, Prou D, Vincent J-D, Vernier P (2003) Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell 95:489–502

    Article  PubMed  CAS  Google Scholar 

  • Candiani S, Augello A, Oliveri D, Passalacqua M, Pennati R, De Bernardi F, Pestarino M (2001) Immunocytochemical localization of serotonin in embryos, larvae and adults of the lancelet, Branchiostoma florida. Histochem J 33:413–420

    Article  PubMed  CAS  Google Scholar 

  • Candiani S, Oliveri D, Parodi M, Castagnola P, Pestarino M (2005) AmphiD1/β, a dopamine D1/β-adrenergic receptor from the amphioxus Branchiostoma floridae: evolutionary aspects of the catecholaminergic system during development. Dev Genes Evol 215:631–638

    Article  PubMed  CAS  Google Scholar 

  • Cardinaud B, Gibert J-M, Liu F, Sugamori KS, Vincent J-D, Niznik HB, Vernier P (1998) Evolution and origin of the diversity of dopamine receptors in vertebrates. Adv Pharmacol 42:936–940

    PubMed  CAS  Google Scholar 

  • Dehal P et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  • Evans PD, Siegler MVS (1982) Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle. J Physiol (Lond) 324:93–112

    CAS  Google Scholar 

  • Evans PD, Maqueira B (2005) Insect octopamine receptors; a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5:111–118

    Article  PubMed  CAS  Google Scholar 

  • Evans PD, O’Shea M (1977) An octopaminergic neuron modulates neuromuscular transmission in the locust. Nature 270:257-259

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) 3.6 edn. Department of Genetics, University of Washington, Washington

  • Flower DR (1999) Modelling G-protein coupled receptors for drug design. Biochim Biophys Acta 1422:207–234

    PubMed  CAS  Google Scholar 

  • Fredricksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups and fingerprints. Mol Pharmacol 63:1256–1272

    Article  Google Scholar 

  • Garcia-Fernàndez J (2006) Amphioxus: a peaceful anchovy fillet to illuminate chordate evolution (1). Int J Biol Sci 2:30–31

    PubMed  Google Scholar 

  • Gebhardt S, Homberg U (2004) Immunocytochemistry of histamine in the brain of the locust Schistocerca gregaria. Cell Tissue Res 317:195–205

    Article  PubMed  CAS  Google Scholar 

  • Gee H (2006) Careful with that amphioxus. Nature 439:923–924

    Article  PubMed  CAS  Google Scholar 

  • Gloriam DEI, Schiöth HB, Fredricksson R (2005) Nine new human Rhodopsin family G-protein coupled receptors: identification, sequence characterization and evolutionary relationship. Biochim Biophys Acta 17722:235–246

    Google Scholar 

  • Graham A (2000) The evolution of the vertebrates—genes and development. Curr Opin Genet Dev 10:624–628

    Article  PubMed  CAS  Google Scholar 

  • Han KA, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18:3650–3658

    PubMed  CAS  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ (2006) A review of neurohormone GPCRs present in the fruitfly, Drosophila melanogaster, and the honeybee, Apis mellifera. Prog Neurobiol 80:1–19

    Article  PubMed  CAS  Google Scholar 

  • Hearn MG, Ren Y, McBride EW, Reveillaud I, Beinborn M, Kopin AS (2002) A Drosophila dopamine 2-like receptor: molecular characterization and identification of multiple alternatively spliced variants. Proc Natl Acad Sci USA 99:14544–14559

    Article  CAS  Google Scholar 

  • Holland PW (1999) Gene duplication: past, present and future. Semin Cell Dev Biol 10:541–547

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ, Holland ND (1999) Chordate origins of the vertebrate central nervous system. Curr Opin Neurobiol 9:596–602

    Article  PubMed  CAS  Google Scholar 

  • Holland ND, Holland LZ (1993) Serotonin-containing cells in the nervous system and other tissues during ontogeny of a lancelet. Branchiostoma floridae. Acta Zool (Stockh) 74:195–204

    Article  Google Scholar 

  • Horn F, Weare J, Beukers MW, Hörsch S, Bairoch A, Che W, Edvardsen Ø, Campagne F, Vriend G (1998) GPCRDB information system for G-protein coupled receptors. Nucleic Acids Res 31:294–297

    Article  CAS  Google Scholar 

  • Humphries MA, Mustard JA, Hunter SJ, Mercer A, Ward V, Ebert PR (2003) Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom body of the honeybee brain. J Neurobiol 55:315–330

    Article  PubMed  CAS  Google Scholar 

  • Kapsimali M, Vidal B, Gonzalez A, Dufour S, Vernier P (2000) Distribution of the mRNA encoding the four dopamine D(1) receptor subtypes in the brain of the european eel (Anguilla anguilla): comparative approach to the function of D(1) receptors in vertebrates. J Comp Neurol 419:320–343

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Yoshida M, Morisawa M (2003) Interaction between noradrenaline or adrenaline and the β1-adrenergic receptor in the nervous system triggers early metamorphosis of larvae in the ascidian. Ciona savignyi. Dev Biol 258:129–140

    Article  CAS  Google Scholar 

  • Koyanagi M, Terakita A, Kubokawa K,.Shichida Y (2002) Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans- retinals as their chromophores. FEBS Lett 531:525–528

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G., Sonnhammer EL (2001) Predicting transmembrane protein topology with a Hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Le Crom S, Sugamori KS, Sidhu A, Niznik HB, Vernier P (2004) Delineation of the conserved functional properties of D1A, D1B and D1C dopamine receptor subtypes in vertebrates. Biol Cell 96:383–394

    Article  PubMed  CAS  Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560

    Article  PubMed  CAS  Google Scholar 

  • Moret F, Christiaen L, Deyts C, Blin M, Joly J-S, Vernier P (2005) The dopamine-synthesizing cells in the swimming larva of the tunicate Ciona intestinalis are located only in the hypothalamus-related domain of the sensory vesicle. Eur J Neurosci 21:3043–3055

    Article  PubMed  Google Scholar 

  • Moret F, Guilland J-C, Coudouel S, Rochette L, Vernier P (2004) Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates. J Comp Neurol 468:135–150

    Article  PubMed  CAS  Google Scholar 

  • Mustard JA, Beggs KT, Mercer AR (2005) Molecular biology of the invertebrate dopamine receptors. Arch Insect Biochem Physiol 59:103–117

    Article  PubMed  CAS  Google Scholar 

  • Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertbrates using an Amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066

    Article  PubMed  Google Scholar 

  • Perez DM (2003) The evolutionary triumphant G-protein coupled receptor. Mol Pharmacol 63:1202–1205

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Escriva H, Xavier-Neto J, Laudet V (2006) Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol 21:269–277

    Article  PubMed  Google Scholar 

  • Shi L, Javitch JA (2002) The binding site of aminergic G-protein coupled receptors: the transmembrane segments and second extracellular loop. Ann Rev Pharmacol Toxicol 42:437–467

    Article  CAS  Google Scholar 

  • Srivastava DP, Reale V, Burman C, Chatwin H, Evans PD (2005a) Biogenic amines and steroids activate a β-adrenergic-like Amphioxus G-protein coupled receptor (GPCR). Soc Neurosci Abstr 31:34.18

    Google Scholar 

  • Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M., Smith T, Evans PD (2005b) Rapid, non-genomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein coupled receptor. J Neurosci 25:6145–6155

    Article  CAS  Google Scholar 

  • Staden R, Beal KF, Bonfield JK (2000) The Staden package, 1998. Meth Mol Biol 132: 115–130

    CAS  Google Scholar 

  • Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JGR, Korf I, Lapp H, Lehvaslaiho H, Matsalla C, Mungall CJ, Osbourns BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E (2002) The Bioperl toolkit: perl modules for the life sciences. Genome Res 12: 1611–1618

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vanden Broeck J, Vulsteke V, Huybrechts R, DeLoof A (1995) Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells. J Neurochem 64:2387–2395

    Article  PubMed  CAS  Google Scholar 

  • Vernier P, Cardinaud B, Valdenaire O, Philippe H, Vincent J-D (1995) An evolutionary view of drug-receptor interaction: the bioamine receptor family. Trends Pharmacol Sci 16:375–381

    Article  PubMed  CAS  Google Scholar 

  • Vincent JD, Cardinaud B, Vernier P (1998) L’évolution des récepteurs des monoamines et l’émergence des systèmes motivationnels et émotionnels chez les vertébrés. Bull Acad Natl Med 182:1505–1516

    PubMed  CAS  Google Scholar 

  • Xhaard H, Rantanen V-V, Nyrönen T, Johnson MS (2006) Molecular evolution of adrenoceptors and dopamine receptors: implications for the binding of catecholamines. J Med Chem 49:1706–1719

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Hirschberg B, Yuan J, Wang AP, Hunt DC, Ludmerer SW, Schmatz DM, Cully DF et al (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride subunits expressed in the eye. J Biol Chem 277:2000–2005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BBSRC through the Babraham Institute. We thank Dr. Mikhail Matz, Whitney Laboratory, University of Florida, St Augustine, USA for kindly supplying us with the amphioxus cDNA libraries used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Evans.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10158_2006_41_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burman, C., Maqueira, B., Coadwell, J. et al. Eleven new putative aminergic G-protein coupled receptors from Amphioxus (Branchiostoma floridae): identification, sequence analysis and phylogenetic relationship. Invert Neurosci 7, 87–98 (2007). https://doi.org/10.1007/s10158-006-0041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-006-0041-z

Keywords

Navigation