Skip to main content
Log in

Equilibrium routing under uncertainty

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We provide a brief introduction to the basic models used to describe traffic on congested networks, both in urban transport and telecommunications. We discuss traffic equilibrium models, covering atomic and non-atomic routing games, with emphasis on situations where the travel times are subject to random fluctuations. We use convex optimization to present the models in a unified framework that stresses the common underlying structures. As a prototypical example of traffic equilibrium with elastic demands, we discuss some models for routing and congestion control in telecommunications. We also describe a class of stochastic dynamics that model the adaptive behavior of agents and which provides a plausible micro-foundation for the equilibrium. Finally we present some recent ideas on how risk-averse behavior might be incorporated in the equilibrium models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We thank Michael Patriksson for pointing out the earlier paper [105] which already formulated an equivalent optimization problem for equilibrium.

  2. The \(\epsilon _a^k\)’s are allowed to depend on k, which may capture differences in travel time perceptions for different classes of agents. However, they are not required to be independent and may be taken the same for all k, allowing even for correlations among arcs.

  3. Since \(\tau _{d_k}^k \equiv 0\) we adopt the convention \(\varphi _{d_k}^k(\cdot )\equiv 0\). Note that \(\varphi _i^k\) is a smooth and concave lower approximation of the polyhedral function \(\bar{\varphi }_i^k(z^k)=\min _{a\in A_i^+}z_a^k\), so that (4) is a smoothed version of the standard shortest path equations \(\bar{\tau }_i^k=\min _{a\in A_i^+}t_a+\bar{\tau }_{j_a}^k\).

  4. Note that the common usage in telecommunications is to state the model as the maximization of a network utility function. Here we follow the convention in traffic equilibrium by stating the model in the form of a convex minimization problem. This choice also facilitates the use of the convex duality theory.

  5. This corresponds to the case of 2 parallel links with linear costs and identical players.

  6. Not all preference relations can be represented in this form, though this is not too restrictive (see e.g. [47, Proposition 2.13]).

  7. The limit cases \(\beta \rightarrow \pm \infty \) can also be considered as extreme attitudes toward risk with \(\rho ^{ent}_{\infty }(X)=\text {ess sup\,}X\) and \(\rho ^{ent}_{-\infty }(X)=\text {ess inf\,}X\). In this paper we only consider finite \(\beta \)’s.

  8. As a technical remark, we note that in order to properly define a random variable \(X^h\) from its distribution, we need \((\varOmega ,{\mathcal {F}},{\mathbb {P}})\) to be a standard non-atomic probability space. However the explicit integral formula for \(\rho ^h(X)\) does not require this.

  9. A simple entropic risk measure corresponds to the case of a Dirac distribution F.

References

  1. Aashtiani, H., Magnanti, T.: Equilibria on a congested transportation network. SIAM J. Algebr. Discrete Methods 2, 213–226 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Akamatsu, T.: Cyclic flows, Markov processes and stochastic traffic assignment. Transp. Res. B 30(5), 369–386 (1996)

    Google Scholar 

  3. Akamatsu, T.: Decomposition of path choice entropy in general transportation networks. Transp. Sci. 31, 349–362 (1997)

    MATH  Google Scholar 

  4. Allais, M.: Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école américaine. Econometrica 21(4), 503–546 (1953)

    MATH  MathSciNet  Google Scholar 

  5. Angelidakis, H., Fotakis, D., Lianeas, T.: Stochastic congestion games with risk-averse players. In: Proceedings of the 6th International Symposium on Algorithmic Game Theory, Aachen, Germany, October 21–23, 2013. Lecture Notes in Computer Science 8146, 86–97 (2013)

  6. Arrow, K.J.: Aspects of the Theory of Risk Bearing. Yrjo Jahnssonin Saatio, Helsinki (1965)

    Google Scholar 

  7. Arthur, W.: On designing economic agents that behave like human agents. J. Evol. Econ. 3, 1–22 (1993)

    Google Scholar 

  8. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    MATH  MathSciNet  Google Scholar 

  9. Avinieri, E., Prashker, J.: The impact of travel time information on travellers’ learning under uncertainty. In: 10th International Conference on Travel Behaviour Research, Lucerne (2003)

  10. Baillon, J., Cominetti, R.: Markovian traffic equilibrium. Math. Progr. Ser. B 111(1–2), 33–56 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Bates, J., Polak, J., Jones, P., Cook, A.: The valuation of reliability for personal travel. Transp. Res. E 37, 191–229 (2001)

    Google Scholar 

  12. Beckmann, M., McGuire, C., Winsten, C.: Studies in Economics of Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  13. Beggs, A.: On the convergence of reinforcement learning. J. Econ. Theory 122, 1–36 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Bell, M.: Alternatives to Dial’s logit assignment algorithm. Transp. Res. B 29(4), 287–296 (1995)

    Google Scholar 

  15. Ben-Akiva, M., Lerman, S.: Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge (1985)

    Google Scholar 

  16. Benaïm, M.: Dynamics of stochastic approximation algorithms. Séminaire de probabilités. In: Azéma, J., Émery, M., Ledoux, M., Yor, M. (eds.) Lecture Notes in Mathematics 1709, pp. 1–68. Springer, Berlin (1999)

  17. Benaïm, M., Hirsch, M.: Mixed equilibria and dynamical systems arising from fictitious play in perturbed games. Games Econ. Behav. 29, 36–72 (1999)

    MATH  Google Scholar 

  18. Benaïm, M., Hofbauer, J., Sorin, S.: Stochastic approximations and differential inclusions. SIAM J. Control Optim. 44, 328–348 (2005)

    MATH  MathSciNet  Google Scholar 

  19. Benaïm, M., Hofbauer, J., Sorin, S.: Stochastic approximations and differential inclusions, part II: applications. Math. Oper. Res. 31, 673–695 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Bernoulli, D.: Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 5, 175–192 (1738). [English translation: Exposition of a new theory on the mesurement of risk. Econometrica 22(1), 23–36 (1954)]

  21. Börgers, T., Sarin, R.: Learning through reinforcement and replicator dynamics. J. Econ. Theory 77(1), 1–14 (1997)

    Google Scholar 

  22. Bravo, M.: An adjusted payoff-based procedure for normal form games. arXiv:1106.5596, pp. 1–16 (2011)

  23. Brown, G.: Iterative solution of games by fictitious play. In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, pp. 374–376. Wiley, New York (1951)

  24. Cantarella, G., Cascetta, E.: Dynamic processes and equilibrium in transportation networks: towards a unifying theory. Transp. Sci. 29, 305–329 (1995)

    MATH  Google Scholar 

  25. Cascetta, E.: A stochastic process approach to the analysis of temporal dynamics in transportation networks. Transp. Res. B 23, 1–17 (1989)

    Google Scholar 

  26. Chateauneuf, A.: Comonotonicity axioms and rank-dependent expected utility theory for arbitrary consequences. J. Math. Econ. 32(1), 21–45 (1999)

    MATH  MathSciNet  Google Scholar 

  27. Chiang, M., Low, S., Calderbank, R., Doyle, J.: Layering as optimization decomposition: a mathematical theory of network architectures. Proc. IEEE 95(1), 255–312 (2007)

    Google Scholar 

  28. Cominetti, R., Facchinei, F., Lasserre, J.: Modern optimization modelling techniques. In: Daniilidis, A., Martinez-Legaz, J.E. (eds.) Advanced Courses in Mathematics CRM Barcelona. Springer, Basel (2012)

    Google Scholar 

  29. Cominetti, R., Guzmán, C.: Network congestion control with Markovian multipath routing. Math. Progr. 147, 231–251 (2014)

    MATH  Google Scholar 

  30. Cominetti, R., Melo, E., Sorin, S.: A payoff-based learning procedure and its application to traffic games. Games Econ. Behav. 70, 71–83 (2010)

    MATH  MathSciNet  Google Scholar 

  31. Cominetti, R., Torrico, A.: Additive consistency of risk measures and its application to risk-averse routing in networks. arXiv:1312.4193, pp. 1–26 (2014)

  32. Dafermos, S.: Traffic equilibrium and variational inequalities. Transp. Sci. 14, 42–54 (1980)

    MathSciNet  Google Scholar 

  33. Daganzo, C.: Unconstrained extremal formulation of some transportation equilibrium problems. Transp. Sci. 16, 332–360 (1982)

    MathSciNet  Google Scholar 

  34. Daganzo, C., Sheffi, Y.: On stochastic models of traffic assignment. Transp. Sci. 11, 253–274 (1977)

    Google Scholar 

  35. Davis, G., Nihan, N.: Large population approximations of a general stochastic traffic model. Oper. Res. 41, 170–178 (1993)

    Google Scholar 

  36. Dentcheva, D., Ruszczynski, A.: Common mathematical foundations of expected utility and dual theories. SIAM J. Optim. 23(1), 381–405 (2013)

    MATH  MathSciNet  Google Scholar 

  37. Dial, R.: A probabilistic multipath traffic assignment model which obviates path enumeration. Transp. Res. 5, 83–111 (1971)

    Google Scholar 

  38. Duffy, J., Hopkins, E.: Learning, information, and sorting in market entry games: theory and evidence. Games Econ. Behav. 51, 31–62 (2005)

    MATH  MathSciNet  Google Scholar 

  39. Dumas, V., Guillemin, F., Robert, P.: A Markovian analysis of additive-increase multiplicative-decrease (AIMD) algorithms. Adv. Appl. Probab. 34, 85–111 (2002)

  40. Ellsberg, D.: Risk, ambiguity and the Savage axioms. Levine’s working paper archive 7605, David K. Levine (2000)

  41. Erev, I., Roth, A.: Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88, 848–881 (1998)

    Google Scholar 

  42. de Finetti, B.: Sul concetto di media. Giornale dell’Istituto Italiano degli Attuari 2, 369–396 (1931)

    Google Scholar 

  43. Fishburn, P.C.: Utility Theory for Decision Making. Publications in Operations Research No. 18. Wiley, New York (1970)

    Google Scholar 

  44. Fisk, C.: Some developments in equilibrium traffic assignment. Transp. Res. B 14, 243–255 (1980)

    MathSciNet  Google Scholar 

  45. Florian, M., Hearn, D.: Network equilibrium models and algorithms. In: Ball, M., et al. (eds.) Handbooks in Operation Research and Management Science, vol. 8, pp. 485–550. Elsevier, Amsterdam (1995)

    Google Scholar 

  46. Florian, M., Hearn, D.: Network equilibrium and pricing. In: Hall, R. (ed.) Handbook of Transportation Science, International Series in Operations Research and Management Science, vol. 56, pp. 373–411. Springer, New York (2003)

    Google Scholar 

  47. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6(4), 429–447 (2002)

    MATH  MathSciNet  Google Scholar 

  48. Föllmer, H., Schied, A.: Robust preferences and convex measures of risk. In: Sandmann, K., Schönbucher, Ph.J. (eds.) Advances in Finance and Stochastics, pp. 39–56. Springer, Berlin (2002)

  49. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. Gruyter Studies in Mathematics, Berlin (2002)

    Google Scholar 

  50. Foster, D., Vohra, R.: Calibrated learning and correlated equilibria. Games Econ. Behav. 21, 40–55 (1997)

    MATH  MathSciNet  Google Scholar 

  51. Freund, Y., Schapire, R.: Adaptive game playing using multiplicative weights. Games Econ. Behav. 29, 79–103 (1999)

    MATH  MathSciNet  Google Scholar 

  52. Friesz, T., Berstein, D., Mehta, N., Tobin, R., Ganjalizadeh, S.: Day-to-day dynamic network disequilibria and idealized traveler information systems. Oper. Res. 42, 1120–1136 (1994)

    MATH  MathSciNet  Google Scholar 

  53. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  54. Fukushima, M.: On the dual approach to the traffic assignment problem. Transp. Res. B 18(3), 235–245 (1984)

    MathSciNet  Google Scholar 

  55. Gallager, R.: A minimum delay routing algorithm using distributed computation. IEEE Trans. Commun. 25(1), 73–85 (1977)

    MATH  MathSciNet  Google Scholar 

  56. Gerber, H.: On additive premium calculation principles. ASTIN Bull. 7(3), 215–222 (1974)

    Google Scholar 

  57. Gibbens, R., Kelly, F.: Resource pricing and the evolution of congestion control. Automatica 35, 1969–1985 (1999)

    MATH  MathSciNet  Google Scholar 

  58. Gojmerac, I.: Adaptive Multipath Routing for Internet Traffic Engineering. Ph.D. Thesis, Technische Universitat Wien (2007)

  59. Goovaerts, M.J., Kaas, R., Laeven, R.J.: A note on additive risk measures in rank-dependent utility. Insur.: Math. Econ. 47(2), 187–189 (2010)

    MATH  MathSciNet  Google Scholar 

  60. Han, H., Shakkottai, S., Hollot, C.V., Srikant, R., Towsley, D.: Overlay TCP for multi-path routing and congestion control. In: ENS-INRIA ARC-TCP workshop, Paris, France (2004)

  61. Hannan, J.: Approximation to Bayes risk in repeated plays. In: Dresher, M., Tucker, A.W., Wolfe, P. (eds.) Contributions to the Theory of Games, vol. 3, pp. 97–139. Princeton University Press, Princeton (1957)

    Google Scholar 

  62. Hart, S.: Adaptive heuristics. Econometrica 73, 1401–1430 (2002)

    Google Scholar 

  63. Hart, S., Mas-Colell, A.: A reinforcement procedure leading to correlated equilibrium. In: Debreu, G., Neuefeind, W., Trockel, W. (eds.) Economics Essays: A Festschrift for Werner Hildenbrand, pp. 181–200. Springer, Berlin (2001)

    Google Scholar 

  64. Hazelton, M.: Day-to-day variation in Markovian traffic assignment models. Transp. Res. B 36, 637–648 (2002)

    Google Scholar 

  65. He, J., Rexford, J.: Towards Internet-wide multipath routing. IEEE Netw. 22(2), 16–21 (2008)

    Google Scholar 

  66. Heilpern, S.: A rank-dependent generalization of zero utility principle. Insur.: Math. Econ. 33(1), 67–73 (2003)

    MATH  MathSciNet  Google Scholar 

  67. Hofbauer, J., Sandholm, W.: On the global convergence of stochastic fictitious play. Econometrica 70, 2265–2294 (2002)

    MATH  MathSciNet  Google Scholar 

  68. Hollander, Y.: Direct versus indirect models for the effects of unreliability. Transp. Res. A 40, 699–711 (2006)

    Google Scholar 

  69. Horowitz, J.: The stability of stochastic equilibrium in a two-link transportation network. Transp. Res. B 18, 13–28 (1984)

    Google Scholar 

  70. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–291 (1979)

    MATH  Google Scholar 

  71. Kelly, F., Massoulié, L., Walton, N.: Resource pooling in congested networks: proportional fairness and product form. Queueing Syst. 63(1–4), 165–194 (2009)

    MATH  MathSciNet  Google Scholar 

  72. Kelly, F., Maulloo, A., Tan, D.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

    MATH  Google Scholar 

  73. Kelly, F.P., Voice, T.: Stability of end-to-end algorithms for joint routing and rate control. Comput. Commun. Rev. 35(2), 5–12 (2005)

    Google Scholar 

  74. Key, P.B., Massoulié, L., Towsley, D.F.: Path selection and multipath congestion control. Commun. ACM 54(1), 109–116 (2011)

    Google Scholar 

  75. Kolmogorov, A.: Sur la notion de la moyenne. Atti Accademia Nazionale dei Lincei 9, 221–235 (1930)

    Google Scholar 

  76. Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: utility functions, random losses and ecn marks. IEEE/ACM Trans. Netw. 11(5), 689–702 (2003)

    Google Scholar 

  77. Kushner, H., Yin, G.: Stochastic Approximations Algorithms and Applications, Applications of Mathematics, vol. 35. Springer, New York (1997)

    Google Scholar 

  78. Larsson, T., Liu, Z., Patriksson, M.: A dual scheme for traffic assignment problems. Optimization 42(4), 323–358 (1997)

    MATH  MathSciNet  Google Scholar 

  79. Lee, G.M., Choi, J.S.: A Survey of Multipath Routing for Traffic Engineering. http://www.slashdocs.com/ivmqst/a-survey-of-multipath-routing.html (2002)

  80. Low, S.: A duality model of TCP and queue management algorithms. IEEE/ACM Trans. Netw. 11(4), 525–536 (2003)

    MathSciNet  Google Scholar 

  81. Low, S., Paganini, F., Doyle, J.: Internet congestion control. IEEE Control Syst. Mag. 22(1), 28–43 (2002)

    Google Scholar 

  82. Low, S., Peterson, L., Wang, L.: Understanding Vegas: a duality model. J. ACM 49(2), 207–235 (2002)

    MathSciNet  Google Scholar 

  83. Luan, C.: Insurance premium calculations with anticipated utility theory. ASTIN Bull. 31(1), 27–39 (2001)

    MATH  MathSciNet  Google Scholar 

  84. Maher, M.: Algorithms for logit-based stochastic user equilibrium assignment. Transp. Res. B 32, 539–549 (1998)

    Google Scholar 

  85. Marcotte, P., Patriksson, M.: Traffic equilibrium. In: Barnhart, C., Laporte, G. (eds.) Transportation, Handbooks in Operations Research and Management Science, vol. 14, pp. 623–713. Elsevier, Amsterdam (2007)

    Google Scholar 

  86. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  87. McKelvey, R., Palfrey, T.: Quantal response equilibria for normal form games. Games Econ. Behav. 10, 6–38 (1995)

    MATH  MathSciNet  Google Scholar 

  88. Miyagi, T.: On the formulation of a stochastic user equilibrium model consistent with random utility theory. In: Proceedings of the 4th World Conference for Transportation Research, pp. 1619–1635 (1985)

  89. Nagumo, M.: On mean values. Tokio Buturigakko-Zassi 40, 19–21 (1931)

    Google Scholar 

  90. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  91. Nie, Y., Wu, X., Homem-de Mello, T.: Optimal path problems with second-order stochastic dominance constraints. Netw. Spat. Econ. 12(4), 561 (2012)

    MathSciNet  Google Scholar 

  92. Nie, Y.M.: Multi-class percentile user equilibrium with flow-dependent stochasticity. Transp. Res. B 45(10), 1641–1659 (2011)

    Google Scholar 

  93. Nie, Y.M., Wu, X.: Shortest path problem considering on-time arrival probability. Transp. Res. B 43(6), 597–613 (2009)

    MathSciNet  Google Scholar 

  94. Nikolova, E.: Approximation algorithms for reliable stochastic combinatorial optimization. In: Proceedings of the 13th International Conference on Approximation and 14th International Conference on Randomization and Combinatorial Optimization. APPROX/RANDOM’10, pp. 338–351. Springer, Berlin (2010)

  95. Nikolova, E., Kelner, J.A., Brand, M., Mitzenmacher, M.: Stochastic shortest paths via quasi-convex maximization. In: Proceedings of the 14th Annual European Symposium. ESA’06, vol. 14, pp. 552–563. Springer, London (2006)

  96. Nikolova, E., Stier-Moses, N.: A mean-risk model for the stochastic traffic assignment problem. Columbia working paper DRO-2011-03 (2011)

  97. Noland, R., Polak, J.: Travel time variability: a review of theoretical and empirical issues. Transp. Rev. 22(1), 39–54 (2002)

    Google Scholar 

  98. Ogryczak, W., Ruszczynski, A.: From stochastic dominance to mean-risk models: semideviations as risk measures. Eur. J. Oper. Res. 116(1), 33–50 (1999)

    MATH  Google Scholar 

  99. Ogryczak, W., Ruszczynski, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13(1), 60–78 (2002)

    MATH  MathSciNet  Google Scholar 

  100. Ordóñez, F., Stier-Moses, N.E.: Wardrop equilibria with risk-averse users. Transp. Sci. 44(1), 63–86 (2010)

    Google Scholar 

  101. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. 8(2), 133–145 (2000)

    Google Scholar 

  102. Paganini, F.: Congestion control with adaptive multipath routing based on optimization. In: Calderbank, R., Kobayashi, H. (eds.) 40th IEEE Conference on Information Sciences and Systems, pp 333–338. IEEE, Princeton, NJ (2006)

  103. Paganini, F., Mallada, E.: A unified approach to congestion control and node-based multipath routing. IEEE/ACM Trans. Netw. 17(5), 1413–1426 (2009)

    Google Scholar 

  104. Patriksson, M.: The traffic assignment problem: models and methods. VSP BV, Utrecht (Facsimile reprint by Dover Publications, 2015) (1994)

  105. Prager, W.: Problems in traffic and transportation. In: Proceedings of the Symposium on Operations Research in Business and Industry, pp. 106–113. Midwest Research Inst. Kansas City, Missouri (1954)

  106. Pratt, J.W.: Risk aversion in the small and in the large. Econometrica 32(1/2), 122–136 (1964)

    MATH  Google Scholar 

  107. Quiggin, J.: A theory of anticipated utility. J. Econ. Behav. Organ. 3(4), 323–343 (1982)

    Google Scholar 

  108. Robinson, J.: An iterative method of solving a game. Ann. Math. 54, 296–301 (1951)

    MATH  Google Scholar 

  109. Rockafellar, R.T.: Convex Analysis (Princeton Mathematical Series), vol. 28. Princeton University Press, Princeton (1970)

    Google Scholar 

  110. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)

    MATH  Google Scholar 

  111. Ruszczynski, A.: Risk-averse dynamic programming for Markov decision processes. Math. Progr. 125(2), 235–261 (2010)

    MATH  MathSciNet  Google Scholar 

  112. Ruszczynski, A., Shapiro, A.: Conditional risk mappings. Math. Oper. Res. 31(3), 544–561 (2006)

    MATH  MathSciNet  Google Scholar 

  113. Ruszczynski, A., Shapiro, A.: Optimization of convex risk functions. Math. Oper. Res. 31(3), 433–452 (2006)

    MATH  MathSciNet  Google Scholar 

  114. Sandholm, W.: Evolutionary implementation and congestion pricing. Rev. Econ. Stud. 69, 667–689 (2002)

    MATH  MathSciNet  Google Scholar 

  115. Sandholm, W.H.: Population Games And Evolutionary Dynamics. Economic Learning and Social Evolution. MIT Press, Cambridge (2010)

    Google Scholar 

  116. Scarsini, M., Tomala, T.: Repeated congestion games with bounded rationality. Int. J. Game Theory 41, 651–669 (2012)

    MATH  MathSciNet  Google Scholar 

  117. Selten, R., Chmura, T., Pitz, T., Kube, S., Schreckenberg, M.: Commuters route choice behaviour. Games Econ. Behav. 58, 394–406 (2007)

    MATH  Google Scholar 

  118. Smith, M.: The stability of a dynamic model of traffic assignment: an application of a method of Lyapunov. Transp. Sci. 18, 245–252 (1984)

    Google Scholar 

  119. Villamizar, C.: MPLS optimized multipath (MPLS-OMP). Internet Draft, draft-ietf- mpls-omp-01. http://tools.ietf.org/html/draft-villamizar-mpls-omp-01 (1999)

  120. Wakker, P.: Separating marginal utility and probabilistic risk aversion. Theory Decis. 36(1), 1–44 (1994)

    MATH  MathSciNet  Google Scholar 

  121. Walton, N.S.: Proportional fairness and its relationship with multi-class queueing networks. Ann. Appl. Probab. 19(6), 2301–2333 (2009)

    MATH  MathSciNet  Google Scholar 

  122. Wardrop, J.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers Part II, pp. 325–378 (1952)

  123. Watling, D., Hazelton, M.: The dynamics and equilibria of day-to-day assignment models. Netw. Spat. Econ. 3, 349–370 (2003)

    Google Scholar 

  124. Wu, X., Nie, Y.M.: Modeling heterogeneous risk-taking behavior in route choice: a stochastic dominance approach. Transp. Res. A 45(9), 896–915 (2011)

    Google Scholar 

  125. Xiao, L., Lo, H.: Adaptive vehicle routing for risk-averse travelers. Transp. Res. C: Emerg. Technol. 36, 460–479 (2013)

    Google Scholar 

  126. Yaari, M.E.: The dual theory of choice under risk. Econometrica 55(1), 95–115 (1987)

    MATH  MathSciNet  Google Scholar 

  127. Yaïche, H., Mazumdar, R., Rosenberg, C.: A game theoretic framework for rate allocation and charging of available bit rate (ABR) connections in ATM networks. In: Broadband Communications, pp. 222–233 (1998)

  128. Young, P.: Strategic Learning and Its Limits. Oxford University Press, Oxford (2004)

    Google Scholar 

  129. Zhang, L., Homem-de Mello, T.: An optimal path model for the risk-averse traveler. http://www.optimization-online.org/DB_FILE/2014/06/4391.pdf (2014)

Download references

Acknowledgments

A significant portion of the material covered in this review comes from four papers written in collaboration with my co-authors Jean-Bernard Baillon, Cristóbal Guzmán, Emerson Melo, Sylvain Sorin and Alfredo Torrico. Our synthesis also benefited greatly from my collaborations with Mario Bravo, Luis Briceño, Manuel Cepeda, José Correa, Cristián Cortés, Mike Florian, Omar Larré, Francisco Martínez, and Nicolas Stier-Moses. I am deeply indebted to all of them for sharing their own views on the subject. I also express my gratitude to Neil Walton for his comments as well as to the five anonymous referees for they careful and detailed revision of the first draft of this paper. Their comments and suggestions were extremely useful to improve the paper presentation. Naturally, I am fully responsible for any inaccuracies that may remain. Along the years my work has received support from different sources. I especially thank the Chilean tax payers for their support through the Grants FONDECYT 1100046 and 1130564, the Núcleo Milenio Información y Coordinación en Redes (ICM/FIC P10-024F), and the Instituto de Sistemas Complejos de Ingeniería (ICM/FIC P05-004-F and Proyecto Basal FBO/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cominetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cominetti, R. Equilibrium routing under uncertainty. Math. Program. 151, 117–151 (2015). https://doi.org/10.1007/s10107-015-0889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0889-y

Keywords

Mathematics Subject Classification

Navigation