Skip to main content

Advertisement

Log in

Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstracts

This work aimed the assessment of biochemical changes induced by laser or LED irradiation during mineralization of a bone defect in an animal model using a spectral model based on Raman spectroscopy. Six groups were studied: clot, laser (λ = 780 nm; 70 mW), LED (λ = 850 ± 10 nm; 150 mW), biomaterial (biphasic synthetic micro-granular hydroxyapatite (HA) + β-tricalcium phosphate), biomaterial + laser, and biomaterial + LED. When indicated, defects were further irradiated at a 48-h interval during 2 weeks (20 J/cm2 per session). At the 15th and 30th days, femurs were dissected and spectra of the defects were collected. Raman spectra were submitted to a model to estimate the relative amount of collagen, phosphate HA, and carbonate HA by using the spectra of pure collagen and biomaterials composed of phosphate and carbonate HA, respectively. The use of the biomaterial associated to phototherapy did not change the collagen formation at both 15 and 30 days. The amount of carbonate HA was not different in all groups at the 15th day. However, at the 30th day, there was a significant difference (ANOVA, p = 0.01), with lower carbonate HA for the group biomaterial + LED compared to biomaterial (p < 0.05). The phosphate HA was higher in the groups that received biomaterial grafts at the 15th day compared to clot (significant for the biomaterial; p < 0.01). At the 30th day, the phosphate HA was higher for the group biomaterial + laser, while this was lower for all the other groups. These results indicated that the use of laser phototherapy improved the repair of bone defects grafted with the biomaterial by increasing the deposition of phosphate HA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pinheiro ALB, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178

    Article  CAS  PubMed  Google Scholar 

  2. Lopes CB, Pacheco MT, Silveira L, Duarte J, Cangussú MC, Pinheiro ALB (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89(3):125–130

    Article  CAS  PubMed  Google Scholar 

  3. Weber JBB, Pinheiro ALB, Oliveira MG, Oliveira FAM, Ramalho LMP (2006) Laser therapy improves healing of bone defects submitted to autogenous bone graft. Photomed Laser Surg 24(1):38–44

    Article  PubMed  Google Scholar 

  4. Torres CS, Santos JN, Monteiro JSC, Gomes PTCC, Pinheiro ALB (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26(4):371–377

    Article  PubMed  Google Scholar 

  5. Soares LGP, Magalhães EB, Magalhães CAB, Ferreira CF, Marques AMC, Pinheiro ALB (2013) New bone formation around implants inserted on autologous and xenografts irradiated or not with IR laser light: a histomorphometric study in rabbits. Braz Dent J 24(3):218–223

    Article  PubMed  Google Scholar 

  6. Pinheiro ALB, Soares LGP, Aciole GTS, Correia NA, Barbosa AF, Ramalho LMP, Santos JN (2011) Light microscopic description of the effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A 98(2):212–221

    Article  PubMed  Google Scholar 

  7. Lopes CB, Pacheco MTT, Silveira L, Cangussu MCT, Pinheiro ALB (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: a Raman spectroscopic study. J Biomed Mater Res A 4(4):1257–1263

    Google Scholar 

  8. Soares LGP, Marques AMC, Barbosa AFS, Santos NR, Aciole JMS, Souza CMC, Pinheiro ALB, Silveira L (2014) Raman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-calcium triphosphate and irradiated or not with λ780 nm laser. Lasers Med Sci 29(5):1539–1550

    Article  PubMed  Google Scholar 

  9. Pinheiro ALB, Soares LGP, Barbosa AFS, Ramalho LMP, Santos JN (2012) Does LED phototherapy influence the repair of bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration? A description of the repair process on rodents. Lasers Med Sci 27(5):1013–1024

    Article  PubMed  Google Scholar 

  10. Pinheiro ALB, Santos NR, Oliveira PC, Aciole GT, Ramos TA, Gonzalez TA, Silva LN, Barbosa AF, Silveira L (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Lasers Med Sci 28(2):513–518

    Article  PubMed  Google Scholar 

  11. Pinheiro ALB, Gerbi MEMM, Limeira Junior FA, Ponzi EAC, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Ramalho LMP (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infrared laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24(2):234–240

    Article  PubMed  Google Scholar 

  12. Soares LG, Marques AM, Guarda MG, Aciole JM, Pinheiro AL, dos Santos JN (2015) Repair of surgical bone defects grafted with hydroxylapatite + β-TCP and irradiated with λ=850 nm LED light. Braz Dent J 26(1):19–25

    Article  PubMed  Google Scholar 

  13. Pinheiro ALB, Soares LGP, Cangussú MCT, Santos NR, Barbosa AFS, Silveira L (2012) Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study. Lasers Med Sci 27(5):903–916

    Article  PubMed  Google Scholar 

  14. Al-Watban FA, Andres BL (2006) Polychromatic LED in oval full-thickness wound healing in non-diabetic and diabetic rats. Photomed Laser Surg 24(1):10–16

    Article  PubMed  Google Scholar 

  15. Weiss RA, Mcdaniel DH, Geronemus RG, Weiss MA, Beasley KL, Munavalli GM, Bellew G (2005) Clinical experience with light emitting diode (LED) photomodulation. Dermatol Surg 31(9):1199–1205

    CAS  PubMed  Google Scholar 

  16. Karu TI, Pyatibrat LV, Afanasyeva NI (2004) A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol 80(2):366–372

    Article  CAS  PubMed  Google Scholar 

  17. Pinheiro ALB, Oliveira MG, Martins PPM, Ramalho LMP, Oliveira MAM, Novaes A, Nicolau RA (2001) Biomodulatory effects of LLLT on bone regeneration. Lasers Ther 13:73–79

    Article  Google Scholar 

  18. Soares LG, Marques AM, Guarda MG, Aciole JM, Andrade AS, Pinheiro AL, Silveira L (2014) Raman spectroscopic study of the repair of surgical bone defects grafted or not with biphasic synthetic micro-granular HA + β-calcium triphosphate irradiated or not with λ850 nm LED light. Lasers Med Sci 29(6):1927–1936

    Article  PubMed  Google Scholar 

  19. Pinheiro AL, Soares LG, Marques AM, Aciole JM, de Souza RA, Silveira L (2014) Raman ratios on the repair of grafted surgical bone defects irradiated or not with laser (λ780 nm) or LED (λ850 nm). J Photochem Photobiol B 138:146–154

    Article  CAS  PubMed  Google Scholar 

  20. de Castro IC, Rosa CB, Dos Reis Júnior JA, Moreira LG, Aragão JS, Barbosa AF, Silveira L, Pinheiro AL (2014) Assessment of the use of LED phototherapy on bone defects grafted with hydroxyapatite on rats with iron-deficiency anemia and nonanemic: a Raman spectroscopy analysis. Lasers Med Sci 29(5):1607–1615

    Article  PubMed  Google Scholar 

  21. Aciole JM, de Castro IC, Soares LG, Barbosa AF, Aciole GT, Silveira L, Pinheiro ALB (2014) Assessment of the LED phototherapy on femoral bone defects of ovariectomized rats: a Raman spectral study. Lasers Med Sci 29(3):1269–1277

    PubMed  Google Scholar 

  22. Hanlon B, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45(2):R1–R59

    Article  CAS  PubMed  Google Scholar 

  23. Moreira LM, Silveira L, Santos FV, Lyon JP, Rocha R, Zângaro RA, Villaverde AB, Pacheco MTT (2008) Raman spectroscopy: a powerful technique for biochemical analysis and diagnosis. Spectrosc Int J 22:1–19

    Article  CAS  Google Scholar 

  24. Krafft EC, Dietzek B, Schmitt M, Popp J (2012) Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. J Biomed Opt 17(4):040801

    Article  PubMed  Google Scholar 

  25. Pence I, Mahadevan-Jansen A (2016) Clinical instrumentation and applications of Raman spectroscopy. Chem Soc Rev 45(7):1958–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469(8):2160–2169

    Article  PubMed  Google Scholar 

  27. Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5(3):259–268

    Article  CAS  PubMed  Google Scholar 

  28. Brennan JF III, Römer TJ, Lees RS, Tercyak AM, Kramer JR, Feld MS (1997) Determination of human coronary artery composition by Raman spectroscopy. Circulation 96(1):99–105

    Article  CAS  PubMed  Google Scholar 

  29. Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasari RR, Crowe JP, Feld MS (2006) In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res 66(6):3317–3322

    Article  CAS  PubMed  Google Scholar 

  30. Stone N, Prieto MCH, Crow P, Uff J, Ritchie AW (2007) The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies. Anal Bioanal Chem 387(5):1657–1668

    Article  CAS  PubMed  Google Scholar 

  31. Silveira L, Silveira FL, Bodanese B, Zângaro RA, Pacheco MTT (2012) Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals. J Biomed Opt 17(7):077003

    Article  PubMed  Google Scholar 

  32. Moler C (2008) Least squares. In: Moler C (ed) Numerical computing with MATLAB: electronic edition. The MathWorks Inc., Natick, http://www.mathworks.com/moler/leastsquares.pdf. Accessed 20 May 2014

    Google Scholar 

  33. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481

    Article  CAS  PubMed  Google Scholar 

  34. Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53(11):1429–1435

    Article  CAS  Google Scholar 

  35. Penel G, Cau E, Delfosse C, Rey C, Hardouin JJ, Delecourt C, Lemaitre J, Leroy G (2003) Raman microspectrometry studies of calcified tissues and related biomaterials. Raman studies of calcium phosphate biomaterials. Dent Med Probl 40(1):37–43

    Google Scholar 

  36. Okagbare PI, Begun D, Tecklenburg M, Awonusi A, Goldstein SA, Morris MD (2012) Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality. J Biomed Opt 17(9):90502-1

    Article  PubMed  Google Scholar 

  37. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42(5):493–541

    Article  CAS  Google Scholar 

  38. Le Geros RZ (1991) Calcium phosphates in oral biology and medicine. In: Karger MH (ed) Monographs in oral science. AG Publishers, Basel, pp 82–107

    Google Scholar 

  39. Bauer TW, Muschler GF (2000) Bone graft materials: an overview of the basic science. Clin Orthop Relat Res 371:10–27

    Article  Google Scholar 

  40. Kalfas H (2001) Principles of bone healing. Neurosurg Focus 10(4):1–4

    Article  Google Scholar 

  41. Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14(Suppl 3):S19–S24

    Article  PubMed  Google Scholar 

  42. Carvalho FB, Aciole GTS, Aciole JMS, Silveira L, Santos JN, Pinheiro ALB (2011) Assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopic study. Proc. SPIE 7887: 7887OT-1

  43. Pinheiro ALB, Gerbi MEM, Ponzi EAC, Ramalho LMP, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins and guided bone regeneration: an in vivo study in a rodent model. Photomed Laser Surg 26(2):167–174

    Article  CAS  PubMed  Google Scholar 

  44. Yamada K (1991) Biological effects of low power Laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jpn Orthop Assoc 65(9):101–114

    Google Scholar 

  45. Trelles MA, Mayayo E (1987) Bone fracture consolidate faster with low power laser. Lasers Surg Med 7(1):36–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CNPq (Brazilian National Counsel of Technological and Scientific Development) and FAPESP (São Paulo Research Foundation—nos. 2009/01788-5 and 2015/24040-7) for the financial support that allowed this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Luiz Barbosa Pinheiro.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest involving this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, A.L.B., Soares, L.G.P., Marques, A.M.C. et al. Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy. Lasers Med Sci 32, 663–672 (2017). https://doi.org/10.1007/s10103-017-2165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2165-2

Keywords

Navigation