Skip to main content

Advertisement

Log in

Assessment of the use of LED phototherapy on bone defects grafted with hydroxyapatite on rats with iron-deficiency anemia and nonanemic: a Raman spectroscopy analysis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to assess bone repair in defects grafted or not with hydroxyapatite (HA) on healthy and iron-deficiency anemia (IDA) rats submitted or not to LED phototherapy (LED-PT) by Raman spectroscopy. The animals were divided in eight groups with five rats each: Clot; Clot + LED; IDA + Clot; IDA + LED; Graft; Graft + LED; IDA + Graft; and IDA + Graft + LED. When appropriated, irradiation with IR LED (λ850 ± 10 nm, 150 mW, CW, Φ = 0.5 cm2, 16 J/cm2, 15 days) was carried out. Raman shifts: ∼960 [symmetric PO4 stretching (phosphate apatite)], ∼1,070 [symmetric CO3 stretching (B-type carbonate apatite)], and ∼1,454 cm−1 [CH2/CH3 bending in organics (protein)] were analyzed. The mean peak values for ∼960, ∼1,070, and ∼1,454 cm−1 were nonsignificantly different on healthy or anemic rats. The group IDA + Graft + LED showed the lowest mean values for the peak ∼960 cm−1 when compared with the irradiated IDA group or not (p ≤ 0.001; p ≤ 0.001). The association of LED-PT and HA-graft showed lowest mean peak at ∼1,454 cm−1 for the IDA rats. The results of this study indicated higher HA peaks as well as a decrease in the level of organic components on healthy animals when graft and LED phototherapy are associated. In the other hand, IDA condition interfered in the graft incorporation to the bone as LED phototherapy only improved bone repair when graft was not used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Killip S, Bennett JM, Chambers MD (2007) Iron deficiency anemia. Am Fam Physician 75:671–678

    PubMed  Google Scholar 

  2. Zhu A, Kaneshiro M, Kaunitz JD (2010) Evaluation and treatment of iron deficiency anemia: a gastroenterological perspective. Dig Dis Sci 55:548–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sampaio SC, Monteiro JS, Cangussu MC, Pires Santos GM, Dos Santos MA, Santos JN, Pinheiro ALB (2013) Effect of laser and LED phototherapies on the healing of cutaneous wound on healthy and iron-deficient Wistar rats and their impact on fibroblastic activity during wound healing. Laser Med Sci 28:799–806

    Article  Google Scholar 

  4. Medeiros DM, Stoecker B, Plattner A, Jennings D, Haub M (2004) Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J Nutr 134:3061–3067

    CAS  PubMed  Google Scholar 

  5. Parelman M, Stoecker B, Baker A, Medeiros D (2006) Iron restriction negatively affects bone in female rats and mineralization of hFOB osteoblast cells. Exp Biol Med 231:378–386

    CAS  Google Scholar 

  6. Tuderman L, Myllyla R, Kivirikko KI (1977) Mechanism of the prolyl hydroxylase reaction 1. Role of co-substrates. Eur J Biochem 80:341–348

    Article  CAS  PubMed  Google Scholar 

  7. DeLuca HF (1976) Metabolism of vitamin D: current status. Am J Clin Nutr 29:1258–1270

    CAS  PubMed  Google Scholar 

  8. Hoenderop JGJ, Nilius B, Bindels RJM (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  CAS  PubMed  Google Scholar 

  9. Pinheiro ALB, Gerbi MEMM et al (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178

    Article  CAS  PubMed  Google Scholar 

  10. Pinheiro ALB, Limeira Júnior FA, Gerbi ME, Ramalho LM, Marzola C, Ponzi EA (2003) Effect of low level laser therapy on the repair of bone defects grafted with inorganic bovine bone. Braz Dent J 14:177–181

    Article  PubMed  Google Scholar 

  11. Pinheiro ALB, Limeira Júnior FA, Gerbi MEMM, Ramalho LM, Marzola C, Ponzi EA, Soares AO, De Carvalho LC, Lima HC, Gonçalves TO (2003) Effect of 830 nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseous membrane. J Clin Laser Med Surg 21:383–388

    Article  Google Scholar 

  12. Limeira Junior FA, Pinheiro ALB, Gerbi MEMM, Ramalho LMP, Marzola CE, Ponzi EAC, Soares AOS, Carvalho LCB, Lima HCV, Gonçalves TO, Meireles GCS, Possa TR (2003) Assessment of bone repair following the use of inorganic bone graft and membrane associated or not to 830 nm laser light. Proc SPIE 4950:30–36

    Article  Google Scholar 

  13. Pinheiro ALB, Limeira Júnior FA, Gerbi MEMM, Ramalho LMP, Marzola C, Ponzi EAC, Soares AOS, Carvalho LCB, Lima HCV, Gonçalves TO (2003) Assessment of bone repair following the use of inorganic bone graft Gen-ox inorganic and membrane or not with 830-nm laser light. Int Congr Ser 1248:445–447

    Article  Google Scholar 

  14. Gross JS (1997) Bone grafting materials for dental applications: a practical guide. Compend Contin Educ Dent 18:1013–1038

    CAS  PubMed  Google Scholar 

  15. Weber JBB, Pinheiro ALB, Oliveira MG, Ramalho LMP (2006) Laser therapy improves healing of bone defects submitted to autogenous bone graft. Photomed Laser Surg 24:38–44

    Article  PubMed  Google Scholar 

  16. Gerbi MMEM, Pinheiro ALB, Ramalho LMP (2008) Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Laser Med Sci 23:313–317

    Article  Google Scholar 

  17. Torres CS, Santos JN, Monteiro JSC, Amorim PG, Pinheiro ALB (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377

    Article  PubMed  Google Scholar 

  18. Pinheiro ALB, Gerbi MEMM, Limeira FA Jr, Ponzi EAC, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Noia M, Ramalho LMP (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model. Laser Med Sci 24:234–240

    Article  Google Scholar 

  19. Whelan HT, Smits RL, Buchmann EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode (LED) irradiation on wound healing. J Clin Laser Med Surg 19:305–314

    Article  CAS  PubMed  Google Scholar 

  20. Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21:67–74

    Article  PubMed  Google Scholar 

  21. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106

    Article  PubMed  Google Scholar 

  22. Lopes CB, Pacheco MTT, Silveira L Jr, Duarte J, Pinheiro ALB (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89:125–130

    Article  CAS  PubMed  Google Scholar 

  23. Lopes CB, Pinheiro ALB, Sathaiah S, Duarte J, Martin MC (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopy study. Photomed Laser Surg 23:27–31

    Article  CAS  PubMed  Google Scholar 

  24. Movasaghi Z, Rehman S, Ihtesham U, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  25. Khan AF, Awais M, Khan AS, Tabassum S, Chaudhry AA, Rehman IU (2013) Raman spectroscopy of natural bone and synthetic apatites. Appl Spectrosc Rev 48:329–355

    Article  CAS  Google Scholar 

  26. Markovic M, Fowler BO, Tung MS (2004) Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Natl Inst Stan 109:553–568

    Article  CAS  Google Scholar 

  27. Chhabra D, Grafals M, Skaro AI et al (2008) Impact of anemia after renal transplantation on patient and graft survival and on rate of acute infection. Clin J Am Soc Nephrol 3:1168–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pinheiro ALB, Santos NRS, Oliveira PC et al (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Laser Med Sci 28:513–518

    Article  Google Scholar 

  29. Carvalho FB, Aciole GTS, Aciole JMS, Silveira-Junior L, Santos JN, Pinheiro ALB (2011) Iron restriction negatively affects bone in female rats and mineralization of hFOB osteoblast cells assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopy study. Proc SPIE 7887:7887OT-1–7887OT-6

    Google Scholar 

  30. Lopes CB, Pacheco MTT, Silveira L Jr, Cangussu MCT, Pinheiro ALB (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: a Raman spectroscopic study. J Biomed Mater Res A 4:1257–1263

    Google Scholar 

  31. Heppenstall R, Bruce MD, Brighton CT (1977) Fracture healing in the presence of anemia. Clin Orthop Relat Res 123:253–258

    PubMed  Google Scholar 

  32. Katsumata S, Tsuboi R, Uehara M, Suzuki K (2006) Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci Biotechnol Biochem 70:2547–2550

    Article  CAS  PubMed  Google Scholar 

  33. Katsumata SI, Katsumata-Tsuboi R, Uehara M, Suzuki K (2009) Severe iron deficiency decreases both bone formation and bone resorption in rats. J Nutr 139:1–6

    Google Scholar 

  34. Pinheiro ALB, Soares LG, Cangussú MC, Santos NR, Barbosa AF, Silveira Júnior L (2012) Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study. Laser Med Sci 27:903–916

    Article  Google Scholar 

  35. Pinheiro ALB, Aciole GTS, Cangussu MCT, Pacheco MTT, Silveira L Jr (2010) Effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study. J Biomed Mater Res 95:1041–1047

    Article  Google Scholar 

  36. Jarcho M (1986) Biomaterial aspects of calcium phosphates. Dent Clin N Am 30:25–47

    CAS  PubMed  Google Scholar 

  37. Lobo AR, Gaievski EHS, Colli C (2011) Hemoglobin regeneration efficiency in anemic rats: effects on bone mineral composition and biomechanical properties. Biol Trace Elem Res 143:403–411

    Article  CAS  PubMed  Google Scholar 

  38. Zhao GY, Zhao LP, He YF, Li GF, Gao C, Li K, Xu YJ (2012) A comparison of the biological activities of human osteoblast hFOB1.19 between iron excess and iron deficiency. Biol Trace Elem Res 150:487–495

    Article  PubMed  Google Scholar 

  39. Silva RA, Fagundes DJ, Antoniolli Silva AC, Sisti KE, Brochado de Carvalho TM, Silva DN (2008) Effect of anti-inflammatory agents on the integration of autogenous bone graft and bovine bone devitalized matrix in rats. Acta Cir Bras 23:140–148

    Article  PubMed  Google Scholar 

  40. Mullick S, Rusia U, Sikka M, Faridi M (2006) Impact of iron deficiency anaemia on T lymphocytes & their subsets in children. Indian J Med Res 124:647–654

    PubMed  Google Scholar 

  41. Ekiz C, Agaoglul L, Karakas Z, Gurel N, Yalcin I (2005) The effect of iron deficiency anemia on the function of the immune system. Hematol J 5:579–583

    Article  CAS  PubMed  Google Scholar 

  42. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–2169

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lang NP, Becker W, Karring T (1998) Clinical periodontology and implant dentistry, 3rd edn. Munksgaard International Publishers, Copenhagen

    Google Scholar 

  44. Pinheiro ALB, Soares LGP, Aciole GTS, Correia NA, Barbosa AF, Ramalho LM, Dos Santos JN (2011) Light microscopic description of the effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res 98:212–221

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for providing financial support for this project.

Conflict of interest

The authors received a grant from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a government research agency, but have full control of all primary data and agree to allow the journal to review their data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio L. B. Pinheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Castro, I.C.V., Rosa, C.B., dos Reis Júnior, J.A. et al. Assessment of the use of LED phototherapy on bone defects grafted with hydroxyapatite on rats with iron-deficiency anemia and nonanemic: a Raman spectroscopy analysis. Lasers Med Sci 29, 1607–1615 (2014). https://doi.org/10.1007/s10103-014-1562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1562-z

Keywords

Navigation