Skip to main content
Log in

Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effectiveness of pre-exercise low-level phototherapy (Light-Emitting Diode therapy [LEDtherapy] or Light Amplification by Stimulate Emission of Radiation therapy [LASERtherapy]) in increasing exercise capacity and muscle performance of people undergoing exercise when compared to placebo treatment. Randomized controlled trials and crossover studies were sought on CENTRAL, MEDLINE, EMBASE, SciELO, PEDro and LILACS from its inception up to February 2015. References lists of included studies were sought for additional relevant research. Two authors independently extracted data on study design, treatment parameters, exercise capacity (number of repetitions, time to exhaustion, blood lactate concentration and lactate dehydrogenase activity) and muscle performance (torque, power and strength) using an structured table. Agreement should be reached by consensus or by a third reviewer. Sixteen studies involving 297 participants were included. Improvement of number of repetitions (mean difference [MD] [95 % confidence interval] = 3.51 repetitions [0.65–6.37]; P = 0.02), delay in time to exhaustion (MD = 4.01 s [2.10–5.91]; P < 0.0001), reduction in lactate levels (MD = 0.34 mmol/L [0.19–0.48]; P < 0.00001) and increased peak torque (MD = 21.51 Nm [10.01–33.01]; P < 0.00001) were observed when LASERtherapy was applied. LEDtherapy meta-analyses were performed with two studies and retrieved no between-group statistically significant difference in power, lactate levels or time to exhaustion. Although our results suggest that LASERtherapy is effective in improving skeletal muscle exercise capacity, the quality of the current evidence is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bachasson D, Guinot M, Wuyam B, et al. Neuromuscular fatigue and exercise capacity in fibromyalgia syndrome. Arthritis Care Res (Hoboken). Mar 2013;65(3):432-440

  2. Garcia-Hermoso A, Saavedra JM, Escalante Y (2015) Effects of exercise on functional aerobic capacity in adults with fibromyalgia syndrome: a systematic review of randomized controlled trials. J Back Musculoskelet Rehabil 28(4):609:619

  3. Kim HC, Mofarrahi M, Hussain SN (2008) Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 3(4):637–658

    PubMed  PubMed Central  Google Scholar 

  4. Nijs J, Paul L, Wallman K (2008) Chronic fatigue syndrome: an approach combining self-management with graded exercise to avoid exacerbations. J Rehabil Med 40(4):241–247

    Article  PubMed  Google Scholar 

  5. Baudry S, Klass M, Pasquet B, Duchateau J (2007) Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol 100(5):515–525

    Article  PubMed  Google Scholar 

  6. FINA. HistoFINA: swimming medalists and statistics at Olympic Games 2013. http://www.fina.org/sites/default/files/HistoFINA_SWOG_1.pdf. Accessed Nov 16 2014

  7. Zainuddin Z, Newton M, Sacco P, Nosaka K (2005) Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J Athl Train 40(3):174–180

    PubMed  PubMed Central  Google Scholar 

  8. Best TM, Hunter R, Wilcox A, Haq F (2008) Effectiveness of sports massage for recovery of skeletal muscle from strenuous exercise. Clin J Sport Med 18(5):446–460

    Article  PubMed  Google Scholar 

  9. Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33(2):145–164

    Article  PubMed  Google Scholar 

  10. Pasiakos SM, Lieberman HR, McLellan TM (2014) Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med 44(5):655–670

    Article  PubMed  Google Scholar 

  11. Zhong DK, Tang D, Xue L, Wen J, Li YP (2016) Effectiveness of moxibustion for exercise-induced fatigue—a systematic review for randomized controlled trials. Chin J Integr Med 22(2):130−140

  12. Dalmonte ME, Forte E, Genova ML, Giuffre A, Sarti P, Lenaz G (2009) Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential. J Biol Chem 284(47):32331–32335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tonkonogi M, Sahlin K (2002) Physical exercise and mitochondrial function in human skeletal muscle. Exerc Sport Sci Rev 30(3):129–137

    Article  PubMed  Google Scholar 

  14. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A 96(3):1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antonialli FC, De Marchi T, Tomazoni SS, et al (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6): 1967–1976

  16. de Almeida P, Lopes-Martins RA, Tomazoni SS et al (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87(5):1159–1163

    Article  CAS  PubMed  Google Scholar 

  17. Cochrane handbook for systematic reviews of interventions. In: Higgins JPT, Green S, Adams NP, eds: The Cochrane Collaboration; 2011: www.cochrane-handbook.org

  18. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clin Res Ed) 339:b2535

    Article  Google Scholar 

  19. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2011) Introduction to meta-analysis. Wiley, Sussex

    Google Scholar 

  20. Ferraresi C, Dos Santos RV, Marques G, et al (2015) Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. Lasers Med Sci 30(4): 1281–1287

  21. Leal Junior ECP, Nassar FR, Tomazoni SS, Bjordal JM, Lopes-Martins RAB (2010) Low-level laser therapy enhances muscular performance as measured by isokinetic dynamometry in humans. Fisioter Pesqui 2010/-1/2PY - 2010:317–321

  22. Vieira WHB, Bezerra RM, Queiroz RAS, Maciel NFB, Parizotto NA, Ferraresi C (2014) Use of low-level laser therapy (808 nm) to muscle fatigue resistance: a randomized double-blind crossover trial. Photomed Laser Surg 32(12):678–685

    Article  Google Scholar 

  23. Maciel TD, Silva J, Jorge FS, Nicolau RA (2013) The influence of the 830 nm laser on the jump performance of female volleyball athletes. Rev Bras Eng Bioméd 2013:199–205

    Article  Google Scholar 

  24. Alves MAS, Pinfildi CE, Neto LN, Lourenco RP, Azevedo P, Dourado VZ (2014) Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci 29(6):1945–1951, http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/163/CN-01036163/frame.html

    Article  Google Scholar 

  25. Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA (2010) Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg 28(5):653–658

    Article  PubMed  Google Scholar 

  26. De Marchi T, Leal ECP Jr, Bortoli C, Tomazoni SS, Lopes-Martins RAB, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236

    Article  PubMed  Google Scholar 

  27. Higashi RH, Toma RL, Tucci HT et al (2013) Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomed Laser Surg 31(12):586–594

    Article  CAS  PubMed  Google Scholar 

  28. Larkin-Kaiser KA, Christou E, Tillman M, George S, Borsa PA (2015) Near-infrared light therapy to attenuate strength loss after strenuous resistance exercise. J Athl Train 50(1):45–50

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leal Junior EC, Lopes-Martins RA, Baroni BM et al (2009) Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg 27(4):617–623

    Article  PubMed  Google Scholar 

  30. Leal ECP Jr, Lopes-Martins RAB, Baroni BM et al (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24(6):857–863

    Article  Google Scholar 

  31. Leal ECP Jr, Lopes-Martins RAB, Rossi RP et al (2009) Effect of cluster multi-diode Light Emitting Diode Therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41(8):572–577

    Article  Google Scholar 

  32. Leal Junior EC, Lopes-Martins RA, Vanin AA et al (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431

    Article  PubMed  Google Scholar 

  33. Leal ECP Jr, Lopes-Martins RAB, Frigo L et al (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532

    Article  Google Scholar 

  34. Toma RL, Tucci HT, Antunes HKM et al (2013) Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers Med Sci 28(5):1375–1382

    Article  PubMed  Google Scholar 

  35. Almeida P, Lopes-Martins RAB, De Marchi T et al (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27(2):453–458

    Article  PubMed  Google Scholar 

  36. Baroni BM, Leal ECP Jr, de Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110(4):789–796

    Article  PubMed  Google Scholar 

  37. Dos Reis FA, da Silva BA, Laraia EM et al (2014) Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomed Laser Surg 32(2):106–112

    Article  CAS  PubMed  Google Scholar 

  38. Leal ECP, Lopes-Martins RAB, Dalan F et al (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26(5):419–424

    Article  Google Scholar 

  39. Miranda EF, Leal-Junior ECP, Marchetti PH, Dal CS (2014) Acute effects of light emitting diodes therapy (LEDT) in muscle function during isometric exercise in patients with chronic obstructive pulmonary disease: preliminary results of a randomized controlled trial. Lasers Med Sci 29(1):359–365

    Article  PubMed  Google Scholar 

  40. Denis R, O’Brien C, Delahunt E (2013) The effects of light emitting diode therapy following high intensity exercise. Phys Ther Sport 14(2):110–115

    Article  PubMed  Google Scholar 

  41. Guyatt GH, Oxman AD, Vist GE et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations British medical journal 336(7650):924–926.

  42. Goodwin ML, Harris JE, Hernández A, Gladden LB (2007) Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol 1(4):558–569

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ferraresi C, de Sousa MV, Huang YY, Bagnato VS, Parizotto NA, Hamblin MR (2015) Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci 30(4):1259–1267

    Article  PubMed  Google Scholar 

  44. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332

    Article  CAS  PubMed  Google Scholar 

  45. Ferraresi C, de Brito OT, de Oliveira ZL et al (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358

    Article  PubMed  Google Scholar 

  46. Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48(1):57–67

    PubMed  PubMed Central  Google Scholar 

  47. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PD, Dal Corso S, Bjordal JM (2013) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30(2): 925–939

  48. Dall Agnol MA, Nicolau RA, de Lima CJ, Munin E (2009) Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24(6):909–916

    Article  PubMed  Google Scholar 

  49. Kelencz CA, Munoz IS, Amorim CF, Nicolau RA (2010) Effect of low-power gallium-aluminum-arsenium noncoherent light (640nm) on muscle activity: a clinical study. Photomed Laser Surg 28(5):647–652

    Article  CAS  PubMed  Google Scholar 

  50. Muñoz ISS, Hauck LA, Nicolau RA, Kelencz CA, Maciel TdS, Paula Júnior AR (2013) Effect of laser vs LED in the near infrared region on the skeletal muscle activity: clinical study. Rev Bras Eng Bioméd 2013/-0/9PY - 2013:262–268

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Kenji Nampo.

Ethics declarations

Funding

EAC is beneficiary of Conselho Nacional de Pesquisa e Desenvolvimento Científico (CNPq) productivity grant. Remaining authors had no financial support for the submitted work.

Additional information

The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nampo, F.K., Cavalheri, V., dos Santos Soares, F. et al. Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. Lasers Med Sci 31, 1957–1970 (2016). https://doi.org/10.1007/s10103-016-1977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1977-9

Keywords

Navigation