Skip to main content
Log in

Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Aging process involves several structural changes in muscle tissue which lead to decrease in musculoskeletal function. One of the most common physiological modifications is the increase in fatigability in elderly people, which leads to inability to maintain strength and motor control. In this context, low-level laser therapy (LLLT) has demonstrated positive results in reducing fatigue during physical exercise. Thus, this study aimed to investigate the effects of LLLT on skeletal muscle fatigue in elderly women. Twenty-four subjects divided in two groups entered a crossover randomized triple-blinded placebo-controlled trial. Active LLLT (808 nm wavelength, 100 mW, energy 7 J) or an identical placebo LLLT was delivered on the rectus femoris muscle immediately before a fatigue protocol. Subjects performed a fatigue protocol which consisted of voluntary isotonic contractions of knee flexion–extension performed with a load corresponding to 75 % of 1-MR (Maximum Repetition) during 60 s. Surface electromyography (SEMG) signals were recorded from rectus femoris muscle of dominant lower limb to evaluate peripheral fatigability using median frequency analysis of SEMG signal. The number of repetitions of flexion–extension during fatigue protocol was also compared between groups. The values of median frequency were used to calculate the slope coefficient. The results showed no difference in the slope comparing placebo LLLT and active LLLT groups (p = 0.293). However, a significant difference was observed in the number of repetitions between groups, after active LLLT, subjects demonstrated significantly higher number of repetitions (p = 0.047). In this study, LLLT was efficient in increasing the mean number of repetitions during knee flexion–extension exercise, although results have not shown delay electromyographic fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sahlin K, Tonkonogi M, Soderlund K (2008) Energy supply and muscle fatigue in humans. Acta Scand Physiol 162:261–266

    Article  Google Scholar 

  2. Ihsan FRM (2005) Low level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg 23:289–294

    Article  PubMed  CAS  Google Scholar 

  3. Hepple R, Hagen J, Krause D, Jackson C (2003) Aerobic power declines with aging in rat skeletal muscles perfused at matched convective O2 delivery. J Appl Physiol 94:744–751

    PubMed  Google Scholar 

  4. Westerblad H, Brutona J, Katza A (2010) Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Experimental Cell Research 316(18):3093–3099

    Article  PubMed  CAS  Google Scholar 

  5. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  PubMed  CAS  Google Scholar 

  6. Masuda K et al (1999) Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol 1:39–46

    Article  Google Scholar 

  7. Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586(1):11–23

    Article  PubMed  CAS  Google Scholar 

  8. Magalhães J, Inácio M, Oliveira E, Ribeiro JC, Ascensão A (2011) Physiological and neuromuscular impact of beach-volleyball with reference to fatigue and recovery. J Sports Med Phys Fitness 51(1):66–73

    PubMed  Google Scholar 

  9. Hunter S, Critchlow A, Enoka R (2004) Influence of aging on sex differences in muscle fatigability. J Appl Physiol 97:1723–1732. doi:10.1152/japplphysiol.00460.2004

    Article  PubMed  Google Scholar 

  10. Doherty T (2003) Aging and sarcopenia. J Appl Physiol 95:1717–27

    PubMed  CAS  Google Scholar 

  11. Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25(1):17–25

    Article  PubMed  CAS  Google Scholar 

  12. Mcneil CJ, Rice CL (2007) Fatigability is increased with age during velocity-dependent contractions of the dorsiflexors. J Gerontol A Biol Sci Med Sci 62:624–629

    Article  PubMed  Google Scholar 

  13. Baudry S, Klass M, Pasquet B, Duchateau J (2007) Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol 100:515–525

    Article  PubMed  Google Scholar 

  14. Rahnama N, Lees A, Reilly T (2006) Electromyography of selected lower-limb muscles fatigued by exercise at the intensity of soccer match-play. J Electromyogr Kinesiol 16:257–263

    Article  PubMed  Google Scholar 

  15. Green D et al (2000) Combined aerobic and resistance exercise training improves functional capacity and strength in CHF. J Appl Physiol 88(5):1565–70

    PubMed  Google Scholar 

  16. Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088. doi:10.1007/s00421-009-1321-1

    Article  PubMed  Google Scholar 

  17. Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431. doi:10.1007/s10103-008-0592-9

    Article  PubMed  Google Scholar 

  18. Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM (2009) Effect of 830nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24:857–863. doi:10.1007/s10103-008-0633-4

    Article  PubMed  Google Scholar 

  19. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni S, Lopes-Martins R, Salvador M (2011) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–6. doi:10.1007/s10103-011-0955-5

    Article  PubMed  Google Scholar 

  20. Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110(4):789–796. doi:10.1007/s00421-010-1562-z

    Article  PubMed  Google Scholar 

  21. Liu XG, Zhou YJ, Liu TC, Yuan JQ (2009) Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. Photomed Laser Surg 27(6):862–869. doi:10.1089=pho.2008.2443

    Article  Google Scholar 

  22. Vieira W, Ferraresi C, Perez S, Baldissera V (2012) Parizotto N (2012) Effects of low-level laser therapy (808nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27:497–504. doi:10.1007/s10103-011-0984-0

    Article  PubMed  Google Scholar 

  23. Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC Jr, Muscara MN, Aimbire F, Frigo L, Iversen VV, Bjordal JM (2006) Effect of lowlevel laser (Ga-Al-As 655nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101(1):283–288. doi:10.1152/japplphysiol.01318.2005

    Article  PubMed  Google Scholar 

  24. Manteĭfel' VM, Karu TI (2004) Increase in the number of contacts of endoplasmic reticulum with mitochondria and plasma membrane in yeast cells stimulated to division with He-Ne laser light. Tsitologiia 46(6):498–505

    PubMed  Google Scholar 

  25. Karu et al (2001) Changes in absorbance of monolayer living cells induced by laser radiation at 633, 670, and 820 nm IEEE. J Set Top Quantum Electron 7(982):988

    Google Scholar 

  26. Stadler I, Evans R, Kolb B et al (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261

    Article  PubMed  CAS  Google Scholar 

  27. Manteĭfel' VM, Bakeeva L, Karu T (1997) Ultrastructural changes in chondriome of human lymphocytes after irradiation with He-Ne laser: appearance of giant mitochondria. J Photochem Photobiol 38(1):25–30

    Article  Google Scholar 

  28. Botter A, Lanfranco F, Merletti R, Minetto MA (2009) Myoelectric fatigue profiles of three knee extensor muscles. Int J Sports Med 30(6):408–17

    Article  PubMed  CAS  Google Scholar 

  29. Morimoto Y, Arai T, Kikushi M, Nakajima S, Nakamura H (1994) Effect of low-intesity argon laser irradiation on mitochondrial respiration. Laser Surg Med 15(2):191–9

    Article  CAS  Google Scholar 

  30. Xiayang X, Xiufeng Z, Timon Cheng-Yi L, Hongying P (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of c2c12 induced by electrical stimulation. Photomed Laser Surg 26(3):197–202. doi:10.1089/pho.2007.2125

    Article  Google Scholar 

  31. Martel GF (2006) Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Exp Physiol 91(2):457–464

    Article  PubMed  Google Scholar 

  32. Capodaglio P, Capodaglio EM, Ferri A, Scaglioni G, Marchi A, Saibene F (2005) Muscle function and functional ability improves more in community-dwelling older women with a mixed-strength training programme. Age Ageing 34(2):141–7

    Article  PubMed  CAS  Google Scholar 

  33. Tracy BL et al (1999) Muscle quality. II. effects of strength training in 65- to 75-yr-old men and women. J Appl Physiol 86:195–201

    PubMed  CAS  Google Scholar 

  34. Ruiter CJ, Korte A, Schreven S, Haan A (2010) Leg dominancy in relation to fast isometric torque production and squat jump height. Eur J Appl Physiol 108:247–255

    Article  PubMed  Google Scholar 

  35. Ferraresi C, Oliveira T, Zafalon L, Reiff R, Baldissera V, Perez S, Matheucci E, Parizotto N (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26:349–358. doi:10.1007/s10103-010-0855-0

    Article  PubMed  Google Scholar 

  36. Tonkonogi M, Sahlin K (2002) Physical exercise and mitochondrial function in human skeletal muscle. Exerc Sport Sci Rev 30(3):129–137

    Article  PubMed  Google Scholar 

  37. Kelencz C, Muñozos I, Amorim C, Nicolau RA (2010) Effect of Low-Power Gallium–Aluminum–Arsenium Noncoherent Light (640nm) on Muscle Activity: A Clinical Study. Photomed Laser Surg 28(5):647–652. doi:10.1089/pho.2008.2467

    Article  PubMed  CAS  Google Scholar 

  38. Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exerciseinduced skeletal muscle fatigue in humans. Photomed Laser Surg 26(5):419–424. doi:10.1089/pho.2007.2160

    Article  PubMed  Google Scholar 

  39. Enwemeka CS (2009) Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photomed Laser Surg 27(3):387–393

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Biosciences of the Federal University of São Paulo, the University of Estadual Paulista Júlio de Mesquita Filho, the Sao Paulo University, the research subjects, and also Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for partial funding of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Luri Toma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toma, R.L., Tucci, H.T., Antunes, H.K.M. et al. Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers Med Sci 28, 1375–1382 (2013). https://doi.org/10.1007/s10103-012-1246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1246-5

Keywords

Navigation