Skip to main content

Advertisement

Log in

Biofilms of Candida albicans serotypes A and B differ in their sensitivity to photodynamic therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Candida albicans is classified into different serotypes according to cell wall mannan composition and cell surface hydrophobicity. Since the effectiveness of photodynamic therapy (PDT) depends on the cell wall structure of microorganisms, the objective of this study was to compare the sensitivity of in vitro biofilms of C. albicans serotypes A and B to antimicrobial PDT. Reference strains of C. albicans serotype A (ATCC 36801) and serotype B (ATCC 36802) were used for the assays. A gallium-aluminum-arsenide laser (660 nm) was used as the light source and methylene blue (300 μM) as the photosensitizer. After biofilm formation on the bottom of a 96-well microplate for 48 h, each Candida strain was submitted to assays: PDT consisting of laser and photosensitizer application (L + P+), laser application alone (L + P−), photosensitizer application alone (L−P+), and application of saline as control (L−P−). After treatment, biofilm cells were scraped off and transferred to tubes containing PBS. The content of the tubes was homogenized, diluted, and seeded onto Sabouraud agar plates to determine the number of colony-forming units (CFU/mL). The results were compared by analysis of variance and Tukey test (p < 0.05). The two strains studied were sensitive to PDT (L + P+), with a log reduction of 0.49 for serotype A and of 2.34 for serotype B. Laser application alone only reduced serotype B cells (0.53 log), and the use of the photosensitizer alone had no effect on the strains tested. It can be concluded that in vitro biofilms of C. albicans serotype B were more sensitive to PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Williams DW, Kuriyama T, Silva S, Malic S, Lewis MA (2011) Candida biofilms and oral candidosis: treatment and prevention. Periodontol 55:250–265. doi:10.1111/j.1600-0757.2009.00338.x

    Article  Google Scholar 

  2. Li L, Redding S, Dongari-Bagtzoglou A (2007) Candida glabrata, an emerging oral opportunistic pathogen. J Dent Res 86:204–215. doi:10.1177/154405910708600304

    Article  CAS  PubMed  Google Scholar 

  3. Martínez JP, Gil ML, López-Ribot JL, Chaffin WL (1998) Serologic response to cell wall mannoproteins and proteins of Candida albicans. Clin Microbiol Rev 11(1):121–41

    PubMed Central  PubMed  Google Scholar 

  4. Mille C, Janbon G, Delplace F, Ibata-Ombetta S, Gaillardin C, Strecker G et al (2004) Inactivation of CaMIT1 inhibits Candida albicans phospholipomannan beta-mannosylation, reduces virulence, and alters cell wall protein beta-mannosylation. J Biol Chem 12(279):47952–60. doi:10.1074/jbc.M405534200

    Article  Google Scholar 

  5. Shibata N, Kobayashi H, Okawa Y, Suzuki S (2003) Existence of novel b-1,2 linkage-containing side chain in the mannan of Candida lusitaniae, antigenically related to Candida albicans. Eur J Biochem 270:2565–2575. doi:10.1046/j.1432-1033.2003.03622.x

    Article  CAS  PubMed  Google Scholar 

  6. Shibata N, Suzuki A, Kobayashi H, Okawa Y (2007) Chemical structure of the cell wall of C. albicans serotype A and its difference in yeast and hyphal form. Biochem J 404:365–372. doi:10.1042/BJ20070081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hazen BW, Hazen KC (1988) Dynamic expression of cell surface hydrophobicity during initial yeast cell growth and before germ tube formation of Candida albicans. Infect Immun 56:2521–2525

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hazen KC, Hazen BW (1987) Temperature-modulated physiological characteristics of Candida albicans. Microbiol Immunol Microbiol Immunol 31:497–508

    Article  CAS  Google Scholar 

  9. Auger P, Dumas C, Joly J (1979) A study of 666 strains of Candida albicans: correlation between serotype and susceptibility to 5-fluorocytosine. J Infect Dis 139:590–4. doi:10.1093/infdis/139.5.590

    Article  CAS  PubMed  Google Scholar 

  10. Martin MV, Lamb DJ (1982) Frequency of Candida albicans serotypes in patients with denture induced stomatitis and in normal denture wearers. J Clin Pathol 35:888–91. doi:10.1136/jcp.35.8.888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Brawner DL, Anderson GL, Yuen KY (1992) Serotype prevalence of Candida albicans from blood culture isolates. J Clin Microbiol 30:149–53

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Suryawanshi H, Ganvir SM, Hazarey VK, Wanjare VS (2012) Oropharyngeal candidosis relative frequency in radiotherapy patient for head and neck cancer. J Oral Maxillofac Pathol 16:31–7. doi:10.4103/0973-029X.92970

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hansclever HF, Mitchell WO (1961) Antigenic studies of Candida. III. Comparative pathogenicity of Candida albicans group A, group B, and Candida stellatoidea. J Bacteriol 82:578–81

    Google Scholar 

  14. Junqueira JC, Jorge AO, Barbosa JO, Rossoni RD, Vilela SF, Costa AC et al (2012) Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers Med Sci 27:1205–12. doi:10.1007/s10103-012-1050-2

    Article  CAS  PubMed  Google Scholar 

  15. Fuchs BB, Tegos GP, Hamblin MR, Mylonakis E (2007) Susceptibility of Cryptococcus neoformans to photodynamic inactivation is associated with cell wall integrity. Antimicrob Agents Chemother 51:2929–36. doi:10.1128/AAC.00121-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kharkwal GB, Sharma SK, Huang YY, Dai T, Michael R, Hamblin MR (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43:755–767. doi:10.1002/lsm.21080

    PubMed Central  PubMed  Google Scholar 

  17. Bertoloni G, Rossi F, Valduga G, Jori G, Ali H, van Lier JE (1992) Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells. Microbios 71:33–46

    CAS  PubMed  Google Scholar 

  18. Teichert MC, Jones JW, Usacheva MN, Biel MA (2002) Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93(2):155–60. doi:10.1067/moe.2002.120051

    Article  CAS  PubMed  Google Scholar 

  19. Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86(8):694–707. doi:10.1177/154405910708600803

    Article  CAS  PubMed  Google Scholar 

  20. Souza SC, Junqueira JC, Balducci I, Ito-Koga CY, Munin E, Jorge AOC (2006) Photosensitization of different Candida species by low power laser light. Photochem Photobiol B Biol 83:34–38. doi:10.1016/j.jphotobiol.2005.12.002

    Article  Google Scholar 

  21. Jin Y, Samaranayake LP, Samaranayake Y, Yip HK (2004) Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol 49(10):789–98. doi:10.1016/j.archoralbio.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  22. Giroldo LM, Felipe MP, Oliveira MA, Munin E, Alves LP, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24:109–12. doi:10.1007/s10103-007-0530-2

    Article  PubMed  Google Scholar 

  23. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25:385–9. doi:10.1007/s10103-009-0706-z

    Article  PubMed  Google Scholar 

  24. Boyce JM, Pittet D (2002) Guideline for hand hygiene in health-care settings: recommendations of the healthcare infection control practices advisory committee and the HICPAC/SHEA/APIC/IDSA hand hygiene task force. Infect Control Hosp Epidemiol 23:S3–40. doi:10.1086/50316

    Article  PubMed  Google Scholar 

  25. Gonzales FP, Felgenträger A, Bäumler W, Maisch T (2013) Fungicidal photodynamic effect of a twofold positively charged porphyrin against Candida albicans planktonic cells and biofilms. Future Microbiol 8:785–97. doi:10.2217/fmb.13.44

    Article  CAS  PubMed  Google Scholar 

  26. Pereira CA, Romeiro RL, Costa ACBP, Machado AKS, Junqueira JC, Jorge AO (2011) Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26:341–8. doi:10.1007/s10103-010-0852-3

    Article  PubMed  Google Scholar 

  27. Schneider M, Kirfel G, Berthold M, Frentzen M, Krause F, Braun A (2012) The impact of antimicrobial photodynamic therapy in an artificial biofilm model. Lasers Med Sci 27:615–20. doi:10.1007/s10103-011-0998-7

    Article  PubMed  Google Scholar 

  28. Vilela SF, Junqueira JC, Barbosa JO, Majewski M, Munin E, Jorge AO (2012) Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study. Arch Oral Biol 57:704–10. doi:10.1016/j.archoralbio.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  29. Nobile CJ, Mitchell AP (2006) Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8:1382–91. doi:10.1111/j.1462-5822.2006.00761.x

    Article  CAS  PubMed  Google Scholar 

  30. Ramage G, Walle KV, Wickes BL, Lopes-Ribot JL (2001) Biofilm formation by Candida dubliniensis. J Clin Microbiol 39:3234–40. doi:10.1128/JCM.39.9.3234-3240.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Andrade MC, Ribeiro AP, Dovigo LN, Brunetti IL, Giampaolo ET, Bagnato VS, et al (2012) Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol S0003-9969(12)00372-X. doi: 10.1016/j.archoralbio.2012.10.011

  32. Sant’Ana Pde L, Milan EP, Martinez R, Queiroz-Telles F, Ferreira MS, Alcântara AP et al (2002) Multicenter Brazilian study of oral Candida species isolated from AIDS patients. Mem Inst Oswaldo Cruz 97:253–7. doi:10.1590/S0074-02762002000200019

    Article  PubMed  Google Scholar 

  33. Velegraki A (1995) In vitro susceptibility to itraconazole and fluconazole of switch phenotypes of Candida albicans serotypes A and B isolated from immunocompromised hosts. J Med Vet Mycol 33:83–85. doi:10.1080/02681219580000181

    Article  CAS  PubMed  Google Scholar 

  34. Brawner DL, Cutler JE (1989) Oral Candida albicans isolates from nonhospitalized normal carriers, immunocompetent hospitalized patients, and immunocompromised patients with or without acquired immunodeficiency syndrome. J Clin Microbiol 27:1335–1341

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Hazen KC, Mandell G, Coleman E, Wu G (2000) Influence of fluconazole at subinhibitory concentrations on cell surface hydrophobicity and phagocytosis of Candida albicans. FEMS Microbiol Lett 183:89–94

    Article  CAS  PubMed  Google Scholar 

  36. Gutknecht N, Moritz A, Conrads G, Sievert T, Lampert F (1996) Bactericidal effect of the Nd:YAG laser in vitro root canals. J Clin Laser Med Surg 14:77–80

    CAS  PubMed  Google Scholar 

  37. Gouw-Soares S, Gutknecht N, Conrads G, Lampert F, Matson E, Eduardo CP (2000) The bactericidal effect of Ho:Yag laser irradiation within contaminated root dentinal samples. J Clin Laser Med Surg 18:81–87. doi:10.1089/clm.2000.18.81

    CAS  PubMed  Google Scholar 

  38. Nussbaum EL, Lilge L, Mazzulli T (2002) Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light. Lasers Surg Med 31:343–351. doi:10.1002/lsm.10121

    Article  PubMed  Google Scholar 

  39. Nussbaum EL, Lilge L, Mazzulli T (2002) Effects of 630-, 660-,810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg 20:325–33

    Article  PubMed  Google Scholar 

  40. Maver-Biscanin M, Mravak-Stipetic M, Jerolimov V (2005) Effect of low-level laser therapy on Candida albicans growth in patients with denture stomatitis. Photomed Laser Surg 23:328–332. doi:10.1089/pho.2005.23.328

    Article  PubMed  Google Scholar 

  41. Basso FG, Oliveira CF, Fontana A, Kurachi C, Bagnato VS, Spolidório DM et al (2011) In vitro effect of low-level laser therapy on typical oral microbial biofilms. Braz Dent J 22:502–10. doi:10.1590/S0103-64402011000600011

    Article  PubMed  Google Scholar 

  42. Lambrechts SA, Aalders MC, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 49:2026–2034. doi:10.1128/AAC.49.5.2026-2034.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wainwright M, Crossley KB (2002) Methylene blue—a therapeutic dye for all seasons? J Chemother 14:431–43. doi:10.1179/joc.2002.14.5.431

    Article  CAS  PubMed  Google Scholar 

  44. Calzavara-Pinton PG, Venturini M, Sala R (2005) A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin. J Photochem Photobiol B 78:1–6. doi:10.1016/j.jphotobiol.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  45. Paz-Cristobal MP, Royo D, Rezusta A, Andrés-Ciriano E, Alejandre MC, Meis JF et al (2014) Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains. Mycoses 57:35–42. doi:10.1111/myc.12099

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodnei Dennis Rossoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossoni, R.D., Barbosa, J.O., de Oliveira, F.E. et al. Biofilms of Candida albicans serotypes A and B differ in their sensitivity to photodynamic therapy. Lasers Med Sci 29, 1679–1684 (2014). https://doi.org/10.1007/s10103-014-1570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1570-z

Keywords

Navigation