Skip to main content

Advertisement

Log in

Recent advances in green energy and product productions, environmentally friendly, healthier and safer technologies and processes, CO2 capturing, storage and recycling, and sustainability assessment in decision-making

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This paper presents a short overview of some of the more current advances related to the productions of green energy and products; to environmentally friendly, healthier and safer technologies and processes; advances in CO2 capturing, storage, and recycling; and novel methods for sustainability assessment in decision-making. The presented innovative research and development represents small, yet important parts of ongoing critical activities brought about to master one of the more significant challenges of our society—reversing the perilous trends related to environmental destruction. It is a further development of the issues overviewed by Klemeš and Varbanov (Clean Technol Environ Policy 15(3):417–422, 2013) previously. The overviewed papers present an important contribution to cleaner production and environmental policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakshi BR (2014) Methods and tools for sustainable process design. Curr Opin Chem Eng 6:69–74

    Article  Google Scholar 

  • Barbosa-Póvoa AP (2012) Progresses and challenges in process industry supply chains optimization. Curr Opin Chem Eng 1:446–452

    Article  Google Scholar 

  • Bessarabov A, Kvasyuk A (2015) Cybernetic researches in technology of chemical reagents and high purity substances. Clean Technol Environ Policy. doi:10.1007/s10098-015-0985-y

    Google Scholar 

  • Biwer A, Heinzle E (2004) Environmental assessment in early process development. J Chem Technol Biotechnol 79:597–609

  • Bonet J, Plesu V, Bonet-Ruiz AE, Tuluc A, Iancu P, Tohaneanu MC, Llorens J (2015) Fast solvent screening for counter-current liquid–liquid extraction columns. Clean Technol Environ Policy. doi:10.1007/s10098-015-0949-2

    Google Scholar 

  • Bonet-Ruiz AE, Plesu V, Bonet J, Iancu P, Llorens J (2015) Preliminary technical feasibility analysis of carbon dioxide absorption by ecological residual solvents rich in ammonia to be used in fertigation. Clean Technol Environ Policy. doi:10.1007/s10098-015-0950-9

    Google Scholar 

  • Bose A, Jana K, Mitra D, De S (2015) Co-production of power and urea from coal with CO2 capture: performance assessment. Clean Technol Environ Policy. doi:10.1007/s10098-015-0960-7

    Google Scholar 

  • Canciglieri O Jr, Sant’Anna AMO, Machado LC (2015) Multi-attribute method for prioritization of sustainable prototyping technologies. Clean Technol Environ Policy. doi:10.1007/s10098-015-0962-5

    Google Scholar 

  • Carvalho A, Matos HA, Gani R (2013) SustainPro—a tool for systematic process analysis, generation and evaluation of sustainable design alternatives. Comput Chem Eng 50:8–27

    Article  CAS  Google Scholar 

  • Chavez RH, Guadarrama JJ (2015) Biogas treatment by ashes from incineration processes. Clean Technol Environ Policy. doi:10.1007/s10098-015-0980-3

    Google Scholar 

  • Chettouh S, Hamzi R, Innal F, Haddad D (2014) Industrial fire simulation and uncertainty associated with the emission dispersion model. Clean Technol Environ Policy 16:1265–1273

    Article  CAS  Google Scholar 

  • Chong FK, Foo DCY, Eljack FT, Atilhan M, Chemmangattuvalappil NG (2015) Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technol Environ Policy. doi:10.1007/s10098-015-0938-5

    Google Scholar 

  • Connelly MC (2014) Innovation compared with materials production: current trends in green energy production and materials. Curr Opin Chem Eng 3:125–129

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2014) Objective dimensionality reduction method within multi-objective optimisation considering total footprints. J Clean Prod 71:75–86

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Varbanov PS, Kravanja Z (2015) Significance of environmental footprints for evaluating sustainability and security of development. Clean Technol Environ Policy. doi:10.1007/s10098-015-0972-3

    Google Scholar 

  • Damartzis T, Papadopoulos AI, Seferlis P (2014) Optimum synthesis of solvent-based post-combustion CO2 capture flow sheets through a generalized modeling framework. Clean Technol Environ Policy 16:1363–1380

    Article  CAS  Google Scholar 

  • Doshi R, Diwekar U, Benavides PT, Yenkie KM, Cabezas H (2014) Maximizing sustainability of ecosystem model through socioeconomic policies derived from multivariable optimal control theory. Clean Technol Environ Policy. doi:10.1007/s10098-014-0889-2

    Google Scholar 

  • Egedy A, Fogarasi S, Varga T, Imre-Lucaci A, Chován T (2014) CFD models in the development of electrical waste recycling technologies. Clean Technol Environ Policy 16:1255–1263

    Article  CAS  Google Scholar 

  • Egedy A, Fogarasi S, Varga T, Imre-Lucaci A, Chován T (2015) CFD-based scale-up and environmental assessment of a rotating drum leaching reactor for WEEE recycling. Clean Technol Environ Policy. doi:10.1007/s10098-015-0974-1

    Google Scholar 

  • Fabiano B, Pistritto F, Reverberi A, Palazzi E (2015) Ethylene–air mixtures under flowing conditions: a model-based approach to explosion conditions. Clean Technol Environ Policy. doi:10.1007/s10098-015-0966-1

    Google Scholar 

  • García A, González Alriols M, Wukovits W, Friedl A, Labidi J (2014) Assessment of biorefinery process intensification by ultrasound technology. Clean Technol Environ Policy 16:1403–1410

    Article  Google Scholar 

  • Gardas RL, Coutinho JAP (2008) Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilib 263:26–32

    Article  CAS  Google Scholar 

  • Gerber L, Fazlollahi S, Maréchal F (2013) A systematic methodology for the environomic design and synthesis of energy systems combining process integration, life cycle assessment and industrial ecology. Comput Chem Eng 59:2–16

    Article  CAS  Google Scholar 

  • Giaouris D, Papadopoulos AI, Voutetakis S, Papadopoulou S, Seferlis P (2015) A power grand composite curves approach for analysis and adaptive operation of renewable energy smart grids. Clean Technol Environ Policy. doi:10.1007/s10098-015-0940-y

    Google Scholar 

  • Grossmann IE, Guillén-Gosálbes G (2010) Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Comput Chem Eng 34:1365–1376

    Article  CAS  Google Scholar 

  • Günther RM, Schöneberger JC, Thielert H, Wozny G (2014) Process development and catalyst testing under industrial conditions. Clean Technol Environ Policy 16:1307–1317

    Article  Google Scholar 

  • Hájek J, Dohnal M, Vondál V, Broukal J (2015) Analysis of effervescent spray quality for oil-fired furnace application. Clean Technol Environ Policy. doi:10.1007/s10098-015-0922-0

    Google Scholar 

  • Hasan MMF, First EL, Boukouvala F, Floudas CA (2014) A novel framework for carbon capture, utilization, and sequestration, CCUS. Comput Aided Chem Eng 34:98–107

    Article  CAS  Google Scholar 

  • Ho WS, Hashim H, Lim JS, Klemeš JJ (2013) Combined design and load shifting for distributed energy system. Clean Technol Environ Policy 15:433–444

    Article  Google Scholar 

  • IEA (2015) Carbon capture and storage roadmap. http://www.iea.org/publications/freepublications/publication/CCS_roadmap_foldout.pdf. Accessed 2 June 2015

  • Jhong HRM, Ma S, Paul JA, Kenis PJA (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199

    Article  Google Scholar 

  • Julklang W, Golman B (2015) Numerical simulation of spray drying of hydroxyapatite nanoparticles. Clean Technol Environ Policy. doi:10.1007/s10098-015-0931-z

    Google Scholar 

  • Junakova N, Junak J, Balintova M (2015) Reservoir sediment as a secondary raw material in concrete production. Clean Technol Environ Policy. doi:10.1007/s10098-015-0943-8

    Google Scholar 

  • Karacan S, Karacan F (2015) Steady-state optimization for biodiesel production in a reactive distillation column. Clean Technol Environ Policy. doi:10.1007/s10098-015-0964-3

    Google Scholar 

  • Kim S, Lee YM (2013) High performance polymer membranes for CO2 separation. Curr Opin Chem Eng 2:238–244

    Article  Google Scholar 

  • Kittikarnchanaporn J, Jitkarnka S (2015) Characteristics of catalysts for enhanced green production of distillates and chemicals in bio-oil from catalytic dehydration of bio-ethanol. Clean Technol Environ Policy. doi:10.1007/s10098-015-0948-3

    Google Scholar 

  • Klemeš JJ (ed) (2015) Assessing and measuring environmental impact and sustainability. Elsevier, Amsterdam

    Google Scholar 

  • Klemeš JJ, Varbanov PS (2013) Process Intensification and Integration: an assessment. Clean Technol Environ Policy 15(3):417–422

    Article  Google Scholar 

  • Kravanja Z, Čuček L (2013) Multi-objective optimisation for generating sustainable solutions considering total effects on the environment. Appl Energy 101:67–80

    Article  Google Scholar 

  • Lei Z, Dai C, Wang W, Chen B (2013) UNIFAC model for ionic liquid-CO2 systems. AIChE J 60:716–729

    Article  Google Scholar 

  • Lestinsky P, Vecer M, Navratil P, Stehlík P (2015) The removal of CO2 from biogas using a laboratory PSA unit: design using breakthrough curves. Clean Technol Environ Policy. doi:10.1007/s10098-015-0912-2

    Google Scholar 

  • Margallo M, Taddei MBM, Hernández-Pellón A, Aldaco R, Irabien A (2015) Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Technol Environ Policy. doi:10.1007/s10098-015-0961-6

    Google Scholar 

  • Meehl GA, Arblaster JM, Fasullo JT, Aixue Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Chang 1:360–364

  • Mendes L, de Medeiros JL, Alves RMB, Araújo OQF (2014) Production of methanol and organic carbonates for chemical sequestration of CO2 from an NGCC power plant. Clean Technol Environ Policy 16:1095–1105

    CAS  Google Scholar 

  • Muenpol S, Yuwapornpanit R, Jitkarnka S (2015) Valuable petrochemicals, petroleum fractions, and sulfur compounds in oils derived from waste tyre pyrolysis using five commercial zeolites as catalysts: impact of zeolite properties. Clean Technol Environ Policy. doi:10.1007/s10098-015-0935-8

    Google Scholar 

  • Mukherjee R, Sengupta D, Sikdar SK (2013) Parsimonious use of indicators for evaluating sustainability systems with multivariate statistical analyses. Clean Technol Environ Policy 15:699–706

    Article  Google Scholar 

  • Mukherjee R, Sengupta D, Sikdar SK (2015) Sustainability in the context of process engineering. Clean Technol Environ Policy 17:833–840

    Article  CAS  Google Scholar 

  • Nag A (2008) Textbook of agricultural biotechnology. PHI Learning Private Limited, New Delhi

    Google Scholar 

  • Narodoslawsky M (2013) From processes to life cycles to technology networks—new challenges for LCA in chemical engineering. Curr Opin Chem Eng 2:282–285

    Article  Google Scholar 

  • OECD/IEA (2010) Energy technology perspectives 2010, scenarios & strategies to 2050. http://www.iea.org/publications/freepublications/publication/etp2010.pdf. Accessed 2 June 2015

  • Pandian S, Hassim MH, Ng RTL, Hurme M (2015) Designing an inherently healthier process based on inherently safer design (ISD) concept: research and development stage. Clean Technol Environ Policy. doi:10.1007/s10098-015-0951-8

    Google Scholar 

  • Patcharavorachot Y, Tiraset S, Wiyaratn W, Assabumrungrat S, Arpornwichanop A (2014) Using a membrane reactor for the oxidative coupling of methane: simulation and optimization. Clean Technol Environ Policy 16:1295–1306

    Article  CAS  Google Scholar 

  • Pirola C, Galli F, Corbetta M, Manenti F (2015) Robust kinetic modeling of heterogeneously catalyzed free fatty acids esterification in monophasic liquid/solid packed bed reactor: rival model discrimination. Clean Technol Environ Policy. doi:10.1007/s10098-015-0925-x

    Google Scholar 

  • Rashidi NA, Yusup S, Borhan A, Loong LH (2014) Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon. Clean Technol Environ Policy 16:1353–1361

    Article  CAS  Google Scholar 

  • Reza B, Sadiq R, Hewage K (2014) Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: a case study on paved roads. Clean Technol Environ Policy 16:251–266

    Article  Google Scholar 

  • Sedláková A, Vilčeková S, Burdova EK (2015) Analysis of material solutions for design of construction details of foundation, wall and floor for energy and environmental impacts. Clean Technol Environ Policy. doi:10.1007/s10098-015-0956-3

    Google Scholar 

  • Seferlis P, Varbanov PS (2014) PRES’13: contribution of process integration and intensification to development of clean technologies. Clean Technol Environ Policy 16:1227–1228

    Article  Google Scholar 

  • Singh S, Olugu EU, Fallahpour A (2014) Fuzzy-based sustainable manufacturing assessment model for SMEs. Clean Technol Environ Policy 16:847–860

    Article  Google Scholar 

  • Sridechprasat P, Siangsai A, Kitiyanan B, Kulprathipanja S, Rangsunvigit P (2015) Effects of initial pressure on the decomposition of LiBH4 and MgH2 mixture. Clean Technol Environ Policy. doi:10.1007/s10098-015-0984-z

    Google Scholar 

  • Sukumara S, Faulkner W, Amundson J, Badurdeen F, Seay J (2014) A multidisciplinary decision support tool for evaluating multiple biorefinery conversion technologies and supply chain performance. Clean Technol Environ Policy 16:1027–1044

    Article  CAS  Google Scholar 

  • Tang MC, Chin MWS, Lim KM, Mun YS, Ng RTL, Tay DHS, Ng DKS (2013) Systematic approach for conceptual design of an integrated biorefinery with uncertainties. Clean Technol Environ Policy 15:783–799

    Article  CAS  Google Scholar 

  • Varbanov PS (2014) Energy and water interactions: implications for industry. Curr Opin Chem Eng 5:15–21

    Article  Google Scholar 

  • Varbanov PS, Klemeš JJ (2011) Integration and management of renewables into total sites with variable supply and demand. Comput Chem Eng 35:1815–1826

    Article  CAS  Google Scholar 

  • Varbanov PS, Seferlis P (2014) Process innovation through Integration approaches at multiple scales: a perspective. Clean Technol Environ Policy 16:1229–1234

    Article  Google Scholar 

  • Waltjen T (2008) Details for passive houses. A catalogue of ecologically rated constructions. Springer, Wien

    Google Scholar 

  • Wan Alwi SR, Tin OS, Rozali NEM, Manan ZA, Klemeš JJ (2013) New graphical tools for process changes via load shifting for hybrid power systems based on Power Pinch Analysis. Clean Technol Environ Policy 15:1–14

    Article  Google Scholar 

  • Ye C, Shreeve JM (2007) Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A 111:1456–1461

    Article  CAS  Google Scholar 

  • Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from EC FP7 Project ENER/FP7/296003/EFENIS ‘Efficient Energy Integrated Solutions for Manufacturing Industries—EFENIS’, and from the Slovenian Research Agency (Program No. P2-0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdravko Kravanja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravanja, Z., Varbanov, P.S. & Klemeš, J.J. Recent advances in green energy and product productions, environmentally friendly, healthier and safer technologies and processes, CO2 capturing, storage and recycling, and sustainability assessment in decision-making. Clean Techn Environ Policy 17, 1119–1126 (2015). https://doi.org/10.1007/s10098-015-0995-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0995-9

Keywords

Navigation