Skip to main content

Circular Economy and Energy Transition

  • Chapter
  • First Online:
Renewable Energy in Circular Economy

Abstract

The Green Deal commits Europe to the goal of being a climate-neutral continent by 2050, which would be impossible to achieve without moving towards a decarbonised economy and a sustainable energy model. That is why the systematic application of the principles of the Circular Economy in the new energy production model is the necessary tool to achieve a successful energy transition in Europe, as well as in the rest of the world. One of the consequences of this process is that renewable energies originating from waste will multiply in the coming decades, so the energy sector will require rapid implementation of circular principles to properly manage this waste and optimize the energy efficiency of its processes. On the other hand, it is expected that in the next 10 years the waste generated by the clean energy infrastructures themselves at the end of their useful life could multiply by 30. Although the promotion of renewable energies is indeed necessary for the energy transition, related technologies and the construction, maintenance and replacement of infrastructure in the energy sector can significantly increase the flow of waste. In addition, among these types of materials, there are many substances included in the list of critical raw materials. All this poses a scenario where recycling and correct waste management can allow economic and environmental savings, reducing the consumption of scarce raw materials. This chapter addresses the relationship between the circular economy and the energy transition from the two points of view mentioned above, laying the foundations to find a satisfactory way to apply a circular model integrally in the energy transition, which results in an optimization of the sustainability and improvement in the competitiveness of the companies involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal NK, Kumar N, Mittal M (2022) Bioethanol and biohydrogen production from agricultural waste. Springer, pp 119–136. https://doi.org/10.1007/978-3-031-05091-6_10

  • Banerjee S, Munagala M, Shastri Y, Vijayaraghavan R, Patti AF, Arora A (2022) Process design and techno-economic feasibility analysis of an integrated pineapple processing waste biorefinery. ACS Engineering Au

    Google Scholar 

  • Broncano HA, Cornejo PO, Espinoza WDJ, Ríos PA (2015) Plan estratégico para la producción de biocombustibles en el Perú con enfoque de economía circular (Doctoral Dissertation, Universidad Católica de Perú)

    Google Scholar 

  • Cardona Alzate CA (2009) Perspectivas de la producción de biocombustibles en Colombia: Contextos latinoamericano y mundial. Revista de Ingeniería 29(29):109–120. https://doi.org/10.16924/revinge.29.13

  • Carley S, Konisky DM (2020) The justice and equity implications of the clean energy transition. Nat Energy 5(8):569–577. https://doi.org/10.1038/s41560-020-0641-6

    Article  CAS  Google Scholar 

  • Carpio RR, de Carvalho Miyoshi S, Elias AM, Furlan FF, de Campos Giordano R, Secchi AR (2021) Multi-objective optimization of a 1G–2G biorefinery: a tool towards economic and environmental viability. J Clean Prod 284:125431. https://doi.org/10.1016/j.jclepro.2020.125431

  • Cavaliere P (2022) Hydrogen revolution. In: Hydrogen assisted direct reduction of iron oxides. Springer, pp 1–24

    Google Scholar 

  • Cenci MP, Scarazzato T, Munchen DD, Dartora PC, Veit HM, Bernardes AM, Dias PR (2022) Eco-friendly electronics—a comprehensive review. Adv Mater Technol 7(2):2001263. https://doi.org/10.1002/admt.202001263

    Article  Google Scholar 

  • Clauser NM, Felissia FE, Area MC, Vallejos ME (2021) A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes. Renew Sustain Energy Rev 139:110687. https://doi.org/10.1016/j.rser.2020.110687

  • Dahiya S, Kumar AN, Shanthi Sravan JS, Chatterjee S, Sarkar O, Mohan SV (2018) Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour Technol 248(A):2–12. https://doi.org/10.1016/j.biortech.2017.07.176

  • Das PK, Das BP, Dash P, Gurunathan B (2022) Production of biofuel from genetically modified microalgal biomass and its effects on environment and public health. In: Biofuels and bioenergy. Elsevier, pp 505–519

    Google Scholar 

  • Ding Z, Grundmann P (2021) Development of biorefineries in the bioeconomy: a fuzzy-set qualitative comparative analysis among European countries. Sustainability 14(1):90. https://doi.org/10.3390/su14010090

    Article  Google Scholar 

  • Executive Office of Energy and Environmental Affairs (2021) Emerging waste streams: opportunities and challenges of the cleanenergy transition from a circular economy perspective. https://www.eea.europa.eu/publications/emerging-waste-streams-opportunities-and. Last Accessed 22 Aug 2022

  • Food and Agriculture Organization (2011) Global food losses and food waste—extent, causes and prevention [Online]. http://www.fao.org/3/a-i2697e.pdf

  • Fernando Y, Tseng ML, Aziz N, Ikhsan RB, Wahyuni-TD IS (2022) Waste-to-energy supply chain management on circular economy capability: an empirical study. Sustain Prod Consumption 31:26–38. https://doi.org/10.1016/j.spc.2022.01.032

    Article  Google Scholar 

  • Gargari MZ, Hagh MT, Zadeh SG (2021) Preventive maintenance scheduling of multi energy microgrid to enhance the resiliency of system. Energy 221:119782. https://doi.org/10.1016/j.energy.2021.119782

  • Hainsch K, Löffler K, Burandt T, Auer H, Crespo del Granado PC, Pisciella P, Zwickl-Bernhard S (2022) Energy transition scenarios: what policies, societal attitudes, and technology developments will realize the EU Green Deal? Energy 239:122067. https://doi.org/10.1016/j.energy.2021.122067

  • Hidalgo D, Martín-Marroquín JM, Corona F (2019) A multi-waste management concept as a basis towards a circular economy model. Renew Sustain Energy Rev 111:481–489. https://doi.org/10.1016/j.rser.2019.05.048

    Article  CAS  Google Scholar 

  • Hidalgo D, Martín-Marroquín JM, Díez D (2022a) Biohydrogen: future energy source for the society. In: Organic waste to biohydrogen. Springer, pp 271–288. https://doi.org/10.1007/978-981-19-1995-4_12

  • Hidalgo D, Martín-Marroquín JM, Díez D (2022b) Innovative technologies for biohydrogen production at industrial level. In: Organic waste to biohydrogen. Springer, pp 181–206. https://doi.org/10.1007/978-981-19-1995-4_8

  • Igbokwe VC, Ezugworie FN, Onwosi CO, Aliyu GO, Obi CJ (2022) Biochemical biorefinery: a low-cost and non-waste concept for promoting sustainable circular bioeconomy. J Environ Manage 305:114333. https://doi.org/10.1016/j.jenvman.2021.114333

  • Jiménez WJ, Valdez LL, Duque MM (2020) Fuentes alternativas para la producción de biocombustibles. Pol Del Conocimiento 5(10):200–214

    Google Scholar 

  • Kapoor R, Ghosh P, Tyagi B, Vijay VK, Vijay V, Thakur IS, Kamyab H, Nguyen DD, Kumar A (2020) Advances in biogas valorization and utilization systems: a comprehensive review. J Clean Prod 273:123052. https://doi.org/10.1016/j.jclepro.2020.123052

  • Kougias PG, Angelidaki I (2018) Biogas and its opportunities—a review. Front Environ Sci Eng 12(3):1–12

    Article  CAS  Google Scholar 

  • Lapko Y, Trianni A, Nuur C, Masi D (2019) In pursuit of closed-loop supply chains for critical materials: an exploratory study in the green energy sector. J Ind Ecol 23(1):182–196. https://doi.org/10.1111/jiec.12741

    Article  Google Scholar 

  • Leonhardt R, Noble B, Poelzer G, Fitzpatrick P, Belcher K, Holdmann G (2022) Advancing local energy transitions: a global review of government instruments supporting community energy. Energy Res Soc Sci 83:102350. https://doi.org/10.1016/j.erss.2021.102350

  • Liu Y, Lyu Y, Tian J, Zhao J, Ye N, Zhang Y, Chen L (2021) Review of waste biorefinery development towards a circular economy: from the perspective of a life cycle assessment. Renew Sustain Energy Rev 139:110716. https://doi.org/10.1016/j.rser.2021.110716

  • Marks S, Dach J, Fernandez Morales FJ, Mazurkiewicz J, Pochwatka P, Gierz Ł (2020) New trends in substrates and biogas systems in Poland. J Ecol Eng 21(4):19–25. https://doi.org/10.12911/22998993/119528

  • Monlau F, Suarez-Alvarez S, Lallement A, Vaca-Medina G, Giacinti G, Munarriz M, Urreta I, Raynaud C, Ferrer C, Castañón S (2021) A cascade biorefinery for the valorization of microalgal biomass: biodiesel, biogas, fertilizers and high valuable compounds. Algal Res 59:102433. https://doi.org/10.1016/j.algal.2021.102433

  • Mulvaney D, Richards RM, Bazilian MD, Hensley E, Clough G, Sridhar S (2021) Progress towards a circular economy in materials to decarbonize electricity and mobility. Renew Sustain Energy Rev 137:110604. https://doi.org/10.1016/j.rser.2020.110604

  • Noblecourt A, Christophe G, Larroche C, Fontanille P (2018) Hydrogen production by dark fermentation from pre-fermented depackaging food wastes. Biores Technol 247:864–870. https://doi.org/10.1016/j.biortech.2017.09.199

    Article  CAS  Google Scholar 

  • Ogunkunle T, Adewumi A, Adepoju A (2019) Biodiversity: overexploited but underutilized natural resource for human existence and economic development. Environ Ecosyst Sci 3(1):26–34. https://doi.org/10.26480/ees.01.2019.26.34

  • Ortiz DLP, Botero-Londoño MA, Botero-Londoño JM (2019) Biomasa residual pecuaria: Revisión sobre la digestión anaerobia como método de producción de energía y otros subproductos. Revista UIS Ingenierías 18(1):149–160. https://doi.org/10.18273/revuin.v18n1-2019013

  • Paredes SA, Barahona LF, Barroso FG, Ponce DV (2020) Biocombustibles y su potencial en el mercado energético mexicano. Revista De Economía, Facultad De Economía, Universidad Autónoma De Yucatán 37(94):35–56

    Google Scholar 

  • Poponi S, Arcese G, Mosconi EM, Pacchera F, Martucci O, Elmo GC (2021) Multi-actor governance for a circular economy in the agri-food sector: bio-districts. Sustainability 13(9):4718. https://doi.org/10.3390/su13094718

    Article  Google Scholar 

  • Rabell VC, Antonio CG, Trejo JFG, Pérez AAF (2022) Conversión de residuos orgánicos mediante un esquema de biorrefinería en biocombustibles y productos de valor agregado: Panorama y perspectivas. Perspectivas De La Ciencia y La Tecnología 5(8):10–17

    Google Scholar 

  • Ralph N (2021) A conceptual merging of circular economy, degrowth and conviviality design approaches applied to renewable energy technology. J Clean Prod 319:128549. https://doi.org/10.1016/j.jclepro.2021.128549

  • Rey-Porras KD, Leguizamón-Nonsoque GMM, González-LaRotta EC, Becerra-Fernández M (2021) Análisis de brechas del sector de biocombustibles en Colombia. Inventum 16(30):61–90. https://doi.org/10.26620/uniminuto.inventum.16.30.2021.61-90

  • Rodionova MV, Bozieva AM, Zharmukhamedov SK, Leong YK, Chi-Wei Lan JCW, Veziroglu A, Veziroglu TN, Tomo T, Chang J, Allakhverdiev SI (2022) A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Int J Hydrogen Energy 47(3):1481–1498. https://doi.org/10.1016/j.ijhydene.2021.10.122

    Article  CAS  Google Scholar 

  • Salvioni DM, Almici A (2020) Transitioning toward a circular economy: the impact of stakeholder engagement on sustainability culture. Sustainability 12(20):8641. https://doi.org/10.3390/su12208641

    Article  Google Scholar 

  • Sánchez FJ (2022) Economía circular de la industria agroalimentaria (Doctoral Dissertation, Universidad de Sevilla)

    Google Scholar 

  • Sarkar O, Katakojwala R, Venkata Mohan SV (2021) Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chem 23(1):561–574. https://doi.org/10.1039/D0GC03063E

    Article  CAS  Google Scholar 

  • Shah AV, Singh A, Sabyasachi Mohanty S, Kumar Srivastava V, Varjani S (2022) Organic solid waste: biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresour Technol 349:126835. https://doi.org/10.1016/j.biortech.2022.126835

  • Shenbagamuthuraman V, Patel A, Khanna S, Banerjee E, Parekh S, Karthick C, Ashok B, Velvizhi G, Nanthagopal K, Ong HC (2022) State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: current changes and perspectives. Chemosphere 286(1):131587. https://doi.org/10.1016/j.chemosphere.2021.131587

  • Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SSR, Petrů M, Lau WJ, Ismail AF (2021) Fourth generation biofuel from genetically modified algal biomass: challenges and future directions. Chemosphere 285:131535. https://doi.org/10.1016/j.chemosphere.2021.131535

  • Smil V (2016) Energy transitions: global and national perspectives. ABC-CLIO

    Google Scholar 

  • Sołowski G, Konkol I, Cenian A (2020) Methane and hydrogen production from cotton waste by dark fermentation under anaerobic and micro-aerobic conditions. Biomass Bioenergy 138:105576. https://doi.org/10.1016/j.biombioe.2020.105576

  • Sperandio GB, Ferreira Filho EX (2019) Fungal co-cultures in the lignocellulosic biorefinery context: a review. Int Biodeterior Biodegradation 142:109–123. https://doi.org/10.1016/j.ibiod.2019.05.014

    Article  CAS  Google Scholar 

  • Su C, Urban F (2021) Circular economy for clean energy transitions: a new opportunity under the COVID-19 pandemic. Appl Energy 289:116666. https://doi.org/10.1016/j.apenergy.2021.116666

  • Torroba A (2020) Atlas de los biocombustibles líquidos 2019–2020. https://repositorio.iica.int/handle/11324/13974. Last Accessed 19 Aug 2022

  • Velenturf APM, Purnell P, Jensen PD (2021) Reducing material criticality through circular business models: challenges in renewable energy. One Earth 4(3):350–352. https://doi.org/10.1016/j.oneear.2021.02.016

    Article  Google Scholar 

  • Xia A, Cheng J, Murphy JD (2016) Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnol Adv 34(5):451–472. https://doi.org/10.1016/j.biotechadv.2015.12.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the CDTI-Spanish Ministry of Science and Innovation in the frame of the project H24NEWAGE (Ref. CER-20211002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolores Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hidalgo, D., Martín-Marroquín, J.M. (2023). Circular Economy and Energy Transition. In: Bandh, S.A., Malla, F.A., Hoang, A.T. (eds) Renewable Energy in Circular Economy. Circular Economy and Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-031-42220-1_2

Download citation

Publish with us

Policies and ethics