Skip to main content

Advertisement

Log in

Adsorption of fluoride from aqueous solution by a new low-cost adsorbent: thermally and chemically activated coconut fibre dust

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Fluoride is a persistent and non-biodegradable pollutant that accumulates in soil, plants, wildlife and human beings. Therefore, knowledge of its removal, using the best technique with optimum efficiency, is needed. In the present study, the potential usage of coconut fibre (Cocos nucifera), which is an agricultural waste, in the adsorption of fluoride from aqueous solutions was evaluated with respect to various experimental parameters including pH, adsorbent dose, contact time, agitation speed, initial fluoride concentration and temperature. The objective is to expand upon research of new and existing fluoride removal technologies or promote a new, alternative process. In the present study, the maximum adsorption capacity was recorded as 12.66, 25.64 and 38.46 mg/g for CFD-1, CFD-2 and CFD-3, respectively. From the kinetic study, it was found that fluoride adsorption by coconut fibre dust followed pseudo-second-order kinetics with an average constant of 0.002, 0.003 and 0.004 g/mg min for CFD-1, CFD-2 and CFD-3, respectively. Intraparticle diffusion model was studied to determine the rate-limiting step of the adsorption process. Thermodynamic parameters such as Gibb’s free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) changes were determined for the adsorption process. Negative ∆H° value signified that the adsorption process was exothermic in nature. Results from this study demonstrated potential utility of CFD adsorbent which could be developed into a suitable method for fluoride removal from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Achak M, Hafidi A, Ouazzani N, Sayadic S, Mandi L (2009) Low cost biosorbent banana peel for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies. J Hazard Mater 166:117–125

    Article  CAS  Google Scholar 

  • Alagumuthu G, Rajan M (2010) Kinetic and equilibrium studies on fluoride removal by zirconium (iv) impregnated groundnut shell carbon. Hem ind 64(4):295–304

    Article  CAS  Google Scholar 

  • Alagumuthu G, Veeraputhiran V, Venkataraman R (2011) Fluoride sorption using cynodon dactylon-based activated carbon. Hem Ind 65(1):23–35

    Article  CAS  Google Scholar 

  • Al-Gheethi AAS, Norli I, Lalung J, Megat Azlan A, Farehah ZAN, Kadir MOA (2014) Biosorption of heavy metals and cephalexin from secondary effluents by tolerant bacteria. Clean Technol Environ Policy 16:137–148. doi:10.1007/s10098-013-0611-9

    Article  CAS  Google Scholar 

  • Andjelkovic I, Nesic J, Stankovic D, Manojlovic D, Pavlovic MB, Jovalekic C, Roglic G (2014) Investigation of sorbents synthesised by mechanical–chemical reaction for sorption of As(III) and As(V) from aqueous medium. Clean Technol Environ Policy 16:395–403. doi:10.1007/s10098-013-0635-1

    Article  CAS  Google Scholar 

  • Anwar J, Shafique U, Zaman W, Salman M, Dar A, Anwar S (2010) Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Biores Technol 101:1752–1755

    Article  CAS  Google Scholar 

  • Athar M, Farooq U, Ali SZ, Salman M (2014) Insight into the binding of copper(II) by non-toxic biodegradable material (Oryza sativa): effect of modification and interfering ions. Clean Technol Environ Policy 16:579–590. doi:10.1007/s10098-013-0664-9

    Article  CAS  Google Scholar 

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water a review on the status and stress effects. Crit Rev Eviron Sci Technol 36(6):433–487

    Article  CAS  Google Scholar 

  • Balouch A, Kolachi M, Talpur FN, Khan H, Bhanger MI (2013) Sorption kinetics, isotherm and thermodynamic modelling of defluoridation of ground water using natural adsorbents. Am J Anal Chem 4:221–228

    Article  Google Scholar 

  • Bhaumik R, Mondal NK (2014) Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach. Appl Wat Sci. doi:10.1007/s13201-014-0211-9

    Google Scholar 

  • Bhaumik R, Mondal NK, Das B, Roy P, Pal KC, Das C, Banerjee A, Dutta JK (2012) Eggshell powder as an adsorbent for removal of fluoride from aqueous solution: equilibrium, kinetic and thermodynamic studies. E J Chem 9:1457–1480

    Article  CAS  Google Scholar 

  • Chakrabarty S, Sarma HP (2012) Defluoridation of contaminated drinking water using neem charcoal adsorbent: kinetics and equilibrium studies. Int J ChemTech Res 4(2):511–516

    CAS  Google Scholar 

  • Chen L, By He, He S, Wang TJ, Su CL, Jin Y (2012) Fe-Ti oxide nano-adsorbent synthesised by co-precipitation for fluoride removal from drinking water and its adsorption mechanism. Powder Technol 227:3–8

    Article  CAS  Google Scholar 

  • Chen N, Feng C, Li M (2014) Fluoride removal on Fe-Al-impregnated granular ceramic adsorbent from aqueous solution. Chem Technol Environ Policy 16:609–617

    Article  CAS  Google Scholar 

  • Chouchene A, Jeguirim M, Trouvé G (2014) Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions. Clean Technol Environ Policy 16:979–986. doi:10.1007/s10098-013-0680-9

    Article  CAS  Google Scholar 

  • Daifullah AAM, Yakout SM, Elreefy SA (2007) Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 147:633–643

    Article  CAS  Google Scholar 

  • Das B, Mondal NK (2011) Calcareous Soil as a new adsorbent to remove lead from aqueous solution: equilibrium, kinetic and thermodynamic study. Univ J Environ Res Technol 1:515–530

    CAS  Google Scholar 

  • Díaz-Nava C, Olguín MT, Solache-Ríos M (2007) Water defluoridation by Mexican heulandite–clinoptilolite. Sep Sci Technol 37:3109–3128

    Article  Google Scholar 

  • Fufa F, Alemayehu E, Lemartz B (2013) Defluoridation of groundwater using termite mound. Water Air Soil Pollut 224:7–15

    Article  Google Scholar 

  • Ganvir V, Das K (2011) Removal of fluoride from drinking water using aluminium hydroxide coated rice husk ash. J Hazard Mater 185:1287–1294

    Article  CAS  Google Scholar 

  • Hernández-Montoyaa V, Ramírez-Montoyaa LA, Bonilla-Petriciolet A, Montes-Moránb MA (2012) Optimizing the removal of fluoride from water using new carbons obtained by modification of nut shell with a calcium solution from egg shell. Biochem Eng J 62:1–7

    Article  Google Scholar 

  • Ho YS, McKay G, Wase DAJ, Forster CF (2000) Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 18(7):639–650

    Article  CAS  Google Scholar 

  • Junlian QIAO, Zimin CUI, Yuankui SUN, Qinghai HU, Xiaohong GUAN (2014) Simultaneous removal of arsenate and fluoride from water by Al-Fe(hydr)oxides. Fron Environ Sci Eng 8(2):169–179

    Article  Google Scholar 

  • Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393. doi:10.1007/s10098-013-0634-2

    Article  CAS  Google Scholar 

  • Karthikeyan G, Ilango S (2007) Fluoride sorption using Moringa indica-based activated carbon. Iran J Environ Health Sci Eng 4(1):21–28

    CAS  Google Scholar 

  • Karthikeyan S, Sivakumar B, Sivakumar N (2010) Film and pore Diffusion modeling for adsorption of reactive red 2 from aqueous solution on to activated carbon Prepared from bio-diesel industrial waste. E J Chem 7(S1):175–184

    Article  Google Scholar 

  • Kaygusuz H, Uzasu H, Erim FB (2014) Removal of fluoride from aqueous solution using aluminium alginate beads. Clean Soil Air Water 42:1–7

    Google Scholar 

  • Killedar DJ, Bhargava DS (1993) Effect of Stirring Rate and temperature on fluoride removal by fishbone charcoal. Indian J Environ Health 35(2):81–87

    Google Scholar 

  • Kumar S, Gupta A, Yadav JP (2007) Fluoride removal by mixtures of activated carbon prepared from neem (Azadirachta indica) and kikar (Acacia arabica). Indian J Chem Technol 14:355–361

    CAS  Google Scholar 

  • Kumar S, Gupta A, Yadav JP (2008) Removal of fluoride by thermally activated carbon prepared from neem (Azadirachta indica) and kikar (Acacia arabica) leaves. J Environ Biol 29(2):227–232

    CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surface of glass, mica, and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Lunge S, Thakre D, Kamble S, Labhsetwar N, Rayalu S (2012) Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste. J Hazard Mater 237–233:424–430

    Google Scholar 

  • Mahdavi S, Jalali M, Afkhami A (2015) Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers. Clean Technol Environ Policy 17:85–102

    Article  CAS  Google Scholar 

  • Maheshwari R, Parihaar S (2013) To defluoridate groundwater employing Moringa oleifera seeds and potash alum. Int J Chem Pharma Sci 1(1):76–79

    Google Scholar 

  • Mahramanlioglu M, Kizilcikli I, Bicer I (2002) Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J Fluor Chem 115:41–47

    Article  CAS  Google Scholar 

  • Manna S, Roy D, Saha P, Adhikari B (2014) Defluoridation of aqueous solution using alkali-steam treated water hyacinth and elephant grass. J Taiwan Inst Chem Eng. doi:10.1016/J.jtice.2014.12.003

    Google Scholar 

  • Michelson LD, Gideon PG, Pace EG, Kutal LH (1975) Removal of soluble mercury from wastewater by complexion technique. Bulletin No. 74. Water Res Technol

  • Mihajlovie MT, Lazarevie SS, Jankovic-Castvan IM, Kovac J, Jokic BM, Janackovic DT, Petrovic RD (2014) Kinetics, thermodynamics and structural investigations on the removal of Pb2+, Cd2+ and Zn2+ from multicomponent solutions onto natural and Fe(III)-modified zeolites. Clean Technol Environ Policy. doi:10.1007/s10098-014-0794-8

    Google Scholar 

  • Mondal MK (2010) Removal of Pb(II) from aqueous solution by adsorption using activated tea waste. Korean J Chem Eng 27(1):144–151

    Article  CAS  Google Scholar 

  • Mondal P, George S (2014) A review on adsorbents used for defluoridation of drinking water. Rev Environ Sci Biotechnol. doi:10.1007/s11157-014-9356-0

    Google Scholar 

  • Mondal NK, Bhaumik R, Banerjee A, Datta JK, Baur T (2012a) A comparative study on the batch performance of fluoride adsorption by activated silica gel and activated rice husk ash. Int J Environ Sci 2(3):1643–1661

    CAS  Google Scholar 

  • Mondal NK, Bhaumik R, Bour T, Das B, Roy P, Datta JK (2012b) Studies on defluoridation of water by tea ash: an unconventional biosorbent. Chem Sci Trans 1(2):239–256

    Article  Google Scholar 

  • Mondal NK, Das B, Bhaumik R, Bour T, Roy P (2012c) Calcareous soil as a promising adsorbent to remove fluoride from aqueous solution: equilibrium, kinetic and thermodynamic study. J Mod Chem Technol 3(3):1–21

    Google Scholar 

  • Mondal NK, Bhaumik R, Roy P, Das B, Datta JK (2013) Investigation on fixed bed column performance of fluoride adsorption by sugarcane charcoal. J Environ Biol 34:1059–1064

    CAS  Google Scholar 

  • Msagati TAM, Mamba BB, Sivasankar V, Omine K (2014) Surface restructuring of lignite by bio-char of Cuminum cyminum—Exploring the prospects in defluoridation followed by fuel applications. Appl Sur Sci. doi:10.1016/j.apsusc.2014.02.052

    Google Scholar 

  • Murugan M, Subramanian E (2006) Studies on defluoridation of water by tamarind seed, an unconventional biosorbent. J Water Health 4(4):453–461

    CAS  Google Scholar 

  • Nethaji S, Sivasamy A (2014) Removal of hexavalent chromium from aqueous solution using activated carbon prepared from walnut shell biomass through alkali impregnation processes. Clean Technol Environ Policy 16:361–368. doi:10.1007/s10098-013-0619-1

    Article  CAS  Google Scholar 

  • Nie Y, Hu C, Kong C (2012) Enhanced fluoride adsorption using Ai(III) modified calcium hydroxyapatite. J Hazard Mater 233–234:194–199

    Article  Google Scholar 

  • Ramos RL, Utrilla JR, Medellin-Castill NA, Polo S (2010) Kinetic modeling of fluoride adsorption from aqueous solution onto bone char. Chem Eng J 158(3):458–467

    Article  Google Scholar 

  • Remenárova L, Pipíška M, Florková E, Horník M, Rozložník M, Augustín J (2014) Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technol Environ Policy 16:1551–1564

    Article  Google Scholar 

  • Sadaf S, Bhatti HN (2014) Evaluation of peanut husk as a novel, low cost biosorbent for the removal of Indosol Orange RSN dye from aqueous solutions: batch and fixed bed studies. Clean Technol Environ Policy 16:527–544. doi:10.1007/s10098-013-0653-z

    Article  CAS  Google Scholar 

  • Saha P, Chowdhury S (2011) Insight into adsorption thermodynamics. In: Tadashi M (ed) Thermodynamics. InTech, Rijeka

    Google Scholar 

  • Saha P, Chowdhury S, Gupta S, Kumar I (2010) Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem Eng J 165:874–882

    Article  CAS  Google Scholar 

  • Sahan T, Ozturk D (2014) Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technol Environ Policy 16:819–831

    Article  CAS  Google Scholar 

  • Satish RS, Raju NSR, Raju GS, Rao GN, Kumar KA, Janardhan C (2007) Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon. Sep Sci Technol 42:769–788

    Article  Google Scholar 

  • Sharma MR, Gupta V (2014) Fluoride and its ecological effects in water: a review. GJRA 3(8):178–180

    Article  Google Scholar 

  • Sigg L (1987) Chemical processes at the particle water-interface. In: Werner S (ed) Aquatic surface chemistry. Wiley, New York, p 325

    Google Scholar 

  • Sivasankar V, Murugesh S, Rajkumar S, Darchen A (2013) Cerium dispersed in carbon (CeDC) and its adsorption behaviour : a first example of tailored adsorbent for fluoride removal from drinking water. Chem Eng J 212:45–54

    Article  Google Scholar 

  • Sujana MG, Anand S (2010) Fluoride removal studies from contaminated ground water by using bauxite. Desalination 267(2–3):222–227

    Google Scholar 

  • Sujana MG, Pradhan HK, Anand S (2009) Studies on sorption of some geomaterials for fluoride removal from aqueous solutions. J Hazard Mater 161:120–125

    Article  CAS  Google Scholar 

  • Sukumar C, Janaki V, Kamala-Kannan S, Shanthi K (2014) Biosorption of chromium(VI) using Bacillus subtilis SS-1 isolated from soil samples of electroplating industry. Clean Technol Environ Policy 16:405–413. doi:10.1007/s10098-013-0636-0

    Article  CAS  Google Scholar 

  • Tor A, Danaoglua N, Arslan G, Cengeloglu Y (2009) Removal of fluoride from water by using granular red mud: batch and column studies. J Hazard Mater 164:271–278

    Article  CAS  Google Scholar 

  • Turner BD, Binning PJ, Sloan SW (2010) Impact of phosphate on fluoride removal by calcite. Environ Eng Sci 27(8):643–650

    Article  CAS  Google Scholar 

  • Wang XH, Song RH, Yang HC, Shi YJ, Dong GB, Yang S, Zhao Y, Sun XF, Wang SG (2013a) Fluoride adsorption on carboxylated aerobic granules containing Ce(III). Bioresour Technol 127:106–111

    Article  CAS  Google Scholar 

  • Wang J, Xu W, Chen L, Jia Y, Wang L, Huang X-J, Liu J (2013b) Excellent fluoride removal performance by CeO2–ZrO2 nanocages in water environment. Chem Eng J 231:198–205

    Article  CAS  Google Scholar 

  • Xu X, Li Q, Cui H, Pang J, Sun L, An H, Zhai J (2011) Adsorption of fluoride from aqueous solution on Magnesia-loaded fly ash cenosphere. Environ Technol 33(10–12):1409–1415

    Google Scholar 

  • Yadav AK, Kaushik CP, Haritash AK, Kansal A, Rani N (2006) Defluoridation of groundwater using brick powder as an adsorbent. J Hazard Mater 128:289–293

    Article  CAS  Google Scholar 

  • Yadav AK, Abbassi R, Gupta A, Dadashzadeh M (2013) Removal of fluoride from aqueous solution and groundwater by wheat straw saw dust and activated carbon of sugarcane. Ecol Eng 52:211–218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naba Kumar Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaumik, R., Mondal, N.K. Adsorption of fluoride from aqueous solution by a new low-cost adsorbent: thermally and chemically activated coconut fibre dust. Clean Techn Environ Policy 17, 2157–2172 (2015). https://doi.org/10.1007/s10098-015-0937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0937-6

Keywords

Navigation