Skip to main content

Advertisement

Log in

Removal of Pb(II) from aqueous solution by adsorption using activated tea waste

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A basic investigation on the removal of Pb(II) ions from aqueous solutions by using activated tea waste was conducted in batch conditions. An inexpensive and effective adsorbent was developed from waste tea leaves for the uptake of Pb(II) from aqueous solution. The influence of different experimental parameters—shaking time, particle size, adsorbent dose, initial pH, temperature, etc.—on lead uptake was evaluated. Lead is adsorbed by the developed adsorbent up to maximum of 99.7%. The initial Pb(II) concentrations were 5, 10, 15 and 20 mg/l in the experiment. The adsorption was found to be exothermic in nature. The Langmuir, Freundlich and Tempkin isotherm models were tried to represent the equilibrium data of Pb(II) adsorption. The adsorption data was fitted very well to the Langmuir isotherm model in the studied concentration range of Pb(II) adsorption. Isotherms have been used to determine thermodynamic parameters of the process: free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°). Column experiments were performed to study the practical applicability of the system. The kinetics and the factors controlling the adsorption process were also discussed. Activated tea waste is a better adsorbent compared to other adsorbents available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. P. Esteves, E. Valdman and S. G. F. Leite, Biotechnol. Lett., 22, 499 (2000).

    Article  CAS  Google Scholar 

  2. V. K. Gupta and I. Ali, J. Colloid Interface Sci., 271, 321 (2004).

    Article  CAS  Google Scholar 

  3. V. K. Gupta, M. Gupta and S. Sharma, Water Res., 35, 1125 (2001).

    Article  CAS  Google Scholar 

  4. M. Sekar, V. Sakthi and S. Rengaraj, J. Colloid Interface. Sci., 279, 307 (2004).

    Article  CAS  Google Scholar 

  5. M. Mouflih, A. Aklil and S. Sebti, J. Hazard. Mater., 119, 183 (2005).

    Article  CAS  Google Scholar 

  6. D. Sabriye and C. Ali, J. Hazard. Mater., 138, 409 (2006).

    Article  Google Scholar 

  7. R. Naseem and S. S. Tahir, Water Res., 35, 3982 (2001).

    Article  CAS  Google Scholar 

  8. B. E. Reed, S. Arunachalam and B. Thomas, Environ. Progr., 13, 60 (1994).

    CAS  Google Scholar 

  9. C. Raji, K. P. Shubha and T. S. Anirudhan, Indian J. Environ. Health, 39, 230 (1997).

    CAS  Google Scholar 

  10. S.H. Abdel-Halim, A.M.A. Shehta and M. F. EI-Shahat, Water Res., 37, 1678 (2003).

    Article  CAS  Google Scholar 

  11. R. Salim, M. Al-Subu and E. Dawod, J. Environ. Manage., 87, 521 (2008).

    Article  CAS  Google Scholar 

  12. M. F. Sawalha, J. R. Peralta-Videa, B. Sanchez-Salcido and J. L. Gardea-Torresdey, J. Environ. Manage., 90, 1213 (2009).

    Article  CAS  Google Scholar 

  13. B. Sen Gupta, M. Curran, S. Hasan and T. K. Ghosh, J. Environ. Manage., 90, 954 (2009).

    Article  Google Scholar 

  14. X. S. Wang, Z. Z. Li and S.R. Tao, J. Environ. Manage., 90, 721 (2009).

    Article  CAS  Google Scholar 

  15. S. S. Ahluwalia and D. Goyal, Eng. Life Sci., 5, 158 (2005).

    Article  CAS  Google Scholar 

  16. B.M.W. P.K. Amarasinghe and R.A. Williams, Chem. Eng. J., 132, 299 (2007).

    Article  CAS  Google Scholar 

  17. T.W. Tee and A.R.M. Khan, Environ. Technol. Lett., 9, 1223 (1988).

    Article  CAS  Google Scholar 

  18. C.C.V. Cruz, A.C.A.D. Costa, C.A. Henriques and A. S. Luna, Bioresour. Technol., 91, 249 (2004).

    Article  CAS  Google Scholar 

  19. G. Bitton, Waste water microbiology, Willey, Europe (1999).

    Google Scholar 

  20. B. Benguella and H. Benaissa, Water Res., 36, 2463 (2002).

    Article  CAS  Google Scholar 

  21. D.O. Cooney, Adsorption design for wastewater treatment, Lewis Publishers, Boca Raton, FL (1999).

    Google Scholar 

  22. G. Mc Kay, Use of adsorbents for the removal of pollutants from wastewaters, CRC Press, Boca Raton, FL (1996).

    Google Scholar 

  23. M. J. Tempkin and V. Pyzhev, Acta Physiol. Chem. USSR, 12, 271 (1940).

    Google Scholar 

  24. C.H. Giles, T. H. Mc Ewan, S.W. Nakhwa and D. Smith, J. Chem. Soc., 4, 3973 (1960).

    Article  Google Scholar 

  25. V.C. Taty-Costodes, H. Fauduet, C. Porte and A. Delacroixs, J. Hazard. Mater., 105, 121 (2003).

    Article  CAS  Google Scholar 

  26. M. Dogan, M. Alkan, A. Turkyilmaz and Y. Ozdemir, J. Hazard. Mater., B109, 141 (2004).

    Google Scholar 

  27. H. Aydin, Y. Bulut and C. Yerlikaya, J. Environ. Manage., 87, 37 (2008).

    Article  CAS  Google Scholar 

  28. M. K. Mondal, Int. J. Sus. Dev. Plann., 3, 377 (2008).

    Article  Google Scholar 

  29. G. Z. Issabayeva, K.M. Aroua, N. Meriam and N. Sulaiman, Biores. Technol., 97, 2350 (2006).

    CAS  Google Scholar 

  30. J. Goel, K. Kadirvelu, C. Rajagopal and V. K. Garg, Ind. Eng. Chem. Res., 44, 1987 (2005).

    Article  CAS  Google Scholar 

  31. S. Doyurum and C. Ali, J. Hazard. Mater., 138, 22 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monoj Kumar Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, M.K. Removal of Pb(II) from aqueous solution by adsorption using activated tea waste. Korean J. Chem. Eng. 27, 144–151 (2010). https://doi.org/10.1007/s11814-009-0304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0304-6

Key words

Navigation