Skip to main content

Advertisement

Log in

Determinants for persistence of Pseudomonas aeruginosa in hospitals: interplay between resistance, virulence and biofilm formation

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa (Pa) is one of the major bacterial pathogens causing nosocomial infections. During the past few decades, multidrug-resistant (MDR) and extensively drug-resistant (XDR) lineages of Pa have emerged in hospital settings with increasing numbers. However, it remains unclear which determinants of Pa facilitated this spread. A total of 211 clinical XDR and 38 susceptible clinical Pa isolates (nonXDR), as well as 47 environmental isolates (EI), were collected at the Heidelberg University Hospital. We used RAPD PCR to identify genetic clusters. Carriage of carbapenamases (CPM) and virulence genes were analyzed by PCR, biofilm formation capacity was assessed, in vitro fitness was evaluated using competitive growth assays, and interaction with the host’s immune system was analyzed using serum killing and neutrophil killing assays. XDR isolates showed significantly elevated biofilm formation (p < 0.05) and higher competitive fitness compared to nonXDR and EI isolates. Thirty percent (62/205) of the XDR isolates carried a CPM. Similarities in distribution of virulence factors, as well as biofilm formation properties, between CPM+ Pa isolates and EI and between CPM- and nonXDR isolates were detected. Molecular typing revealed two distinct genetic clusters within the XDR population, which were characterized by even higher biofilm formation. In contrast, XDR isolates were more susceptible to the immune response than nonXDR isolates. Our study provides evidence that the ability to form biofilms is an outstanding determinant for persistence and endemic spread of Pa in the hospital setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis Off Publ Infect Dis Soc Am 34(5):634–640. doi:10.1086/338782

    Article  CAS  Google Scholar 

  2. Oliver A, Mulet X, Lopez-Causape C, Juan C (2015) The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance Updat Rev Comment Antimicrob Anticancer Chemother 21–22:41–59. doi:10.1016/j.drup.2015.08.002

    Article  Google Scholar 

  3. Potron A, Poirel L, Nordmann P (2015) Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 45(6):568–585. doi:10.1016/j.ijantimicag.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  4. Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422. doi:10.3389/fmicb.2013.00422

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hilker R, Munder A, Klockgether J, Losada PM, Chouvarine P, Cramer N, Davenport CF, Dethlefsen S, Fischer S, Peng H, Schonfelder T, Turk O, Wiehlmann L, Wolbeling F, Gulbins E, Goesmann A, Tummler B (2015) Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment. Environ Microbiol 17(1):29–46. doi:10.1111/1462-2920.12606

    Article  CAS  PubMed  Google Scholar 

  6. Dubern JF, Cigana C, De Simone M, Lazenby J, Juhas M, Schwager S, Bianconi I, Doring G, Eberl L, Williams P, Bragonzi A, Camara M (2015) Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific. Environ Microbiol 17(11):4379–4393. doi:10.1111/1462-2920.12863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. doi:10.1146/annurev.micro.56.012302.160705

    Article  CAS  PubMed  Google Scholar 

  8. Laverty G, Gorman SP, Gilmore BF (2014) Biomolecular mechanisms of Pseudomonas aeruginosa and escherichia coli biofilm formation. Pathogens 3(3):596–632. doi:10.3390/pathogens3030596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G, Liu H, Ma LZ (2014) Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 80(21):6724–6732. doi:10.1128/AEM.01237-14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, Alginate, Pel, and Psl. Front Microbiol 2:167. doi:10.3389/fmicb.2011.00167

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ma L, Wang J, Wang S, Anderson EM, Lam JS, Parsek MR, Wozniak DJ (2012) Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ Microbiol 14(8):1995–2005. doi:10.1111/j.1462-2920.2012.02753.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR (2015) Biofilm formation as a response to ecological competition. PLoS Biol 13(7), e1002191. doi:10.1371/journal.pbio.1002191

    Article  PubMed  PubMed Central  Google Scholar 

  13. Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73(6):3693–3701. doi:10.1128/IAI.73.6.3693-3701.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  15. Hansch GM, Brenner-Weiss G, Prior B, Wagner C, Obst U (2008) The extracellular polymer substance of Pseudomonas aeruginosa: too slippery for neutrophils to migrate on? Int J Artif Organs 31(9):796–803

    CAS  PubMed  Google Scholar 

  16. Gunther F, Wabnitz GH, Stroh P, Prior B, Obst U, Samstag Y, Wagner C, Hansch GM (2009) Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol 46(8–9):1805–1813. doi:10.1016/j.molimm.2009.01.020

    Article  PubMed  Google Scholar 

  17. Meyle E, Stroh P, Gunther F, Hoppy-Tichy T, Wagner C, Hansch GM (2010) Destruction of bacterial biofilms by polymorphonuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. Int J Artif Organs 33(9):608–620

    CAS  PubMed  Google Scholar 

  18. Savoia D, Deplano C, Zucca M (2008) Pseudomonas aeruginosa and Burkholderia cenocepacia infections in patients affected by cystic fibrosis: serum resistance and antibody response. Immunol Investig 37(1):19–27. doi:10.1080/08820130701741775

    Article  CAS  Google Scholar 

  19. Mueller-Ortiz SL, Drouin SM, Wetsel RA (2004) The alternative activation pathway and complement component C3 are critical for a protective immune response against Pseudomonas aeruginosa in a murine model of pneumonia. Infect Immun 72(5):2899–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berends ET, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SH (2014) Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 38(6):1146–1171. doi:10.1111/1574-6976.12080

    Article  CAS  PubMed  Google Scholar 

  21. Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tummler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150. doi:10.3389/fmicb.2011.00150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Deziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7(10):R90. doi:10.1186/gb-2006-7-10-r90

    Article  PubMed  PubMed Central  Google Scholar 

  23. Soong G, Muir A, Gomez MI, Waks J, Reddy B, Planet P, Singh PK, Kaneko Y, Wolfgang MC, Hsiao YS, Tong L, Prince A (2006) Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J Clin Invest 116(8):2297–2305. doi:10.1172/JCI27920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michalska M, Wolf P (2015) Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 6:963. doi:10.3389/fmicb.2015.00963

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ballok AE, O’Toole GA (2013) Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na + and Cl- flux in the lung. J Bacteriol 195(18):4013–4019. doi:10.1128/JB.00339-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sawa T (2014) The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care 2(1):10. doi:10.1186/2052-0492-2-10

    Article  PubMed  PubMed Central  Google Scholar 

  27. Allewelt M, Coleman FT, Grout M, Priebe GP, Pier GB (2000) Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun 68(7):3998–4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yahr TL, Hovey AK, Kulich SM, Frank DW (1995) Transcriptional analysis of the Pseudomonas aeruginosa exoenzyme S structural gene. J Bacteriol 177(5):1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vance RE, Rietsch A, Mekalanos JJ (2005) Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun 73(3):1706–1713. doi:10.1128/IAI.73.3.1706-1713.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stevens TC, Ochoa CD, Morrow KA, Robson MJ, Prasain N, Zhou C, Alvarez DF, Frank DW, Balczon R, Stevens T (2014) The Pseudomonas aeruginosa exoenzyme Y impairs endothelial cell proliferation and vascular repair following lung injury. Am J Physiol Lung Cell Mol Physiol 306(10):L915–L924. doi:10.1152/ajplung.00135.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morrow KA, Ochoa CD, Balczon R, Zhou C, Cauthen L, Alexeyev M, Schmalzer KM, Frank DW, Stevens T (2016) Pseudomonas aeruginosa exoenzymes U and Y induce a transmissible endothelial proteinopathy. Am J Physiol Lung Cell Mol Physiol 310(4):L337–L353. doi:10.1152/ajplung.00103.2015

    Article  PubMed  Google Scholar 

  32. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  33. He J, Baldini RL, Deziel E, Saucier M, Zhang Q, Liberati NT, Lee D, Urbach J, Goodman HM, Rahme LG (2004) The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci USA 101(8):2530–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kukavica-Ibrulj I, Bragonzi A, Paroni M, Winstanley C, Sanschagrin F, O’Toole GA, Levesque RC (2008) In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection. J Bacteriol 190(8):2804–2813. doi:10.1128/JB.01572-07

    Article  CAS  PubMed  Google Scholar 

  35. Campbell M, Mahenthiralingam E, Speert DP (2000) Evaluation of random amplified polymorphic DNA typing of Pseudomonas aeruginosa. J Clin Microbiol 38(12):4614–4615

    CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp JoVE (47). doi:10.3791/2437

  37. Kaszab E, Szoboszlay S, Dobolyi C, Hahn J, Pek N, Kriszt B (2011) Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts. Bioresour Technol 102(2):1543–1548. doi:10.1016/j.biortech.2010.08.027

    Article  CAS  PubMed  Google Scholar 

  38. Sun Z, Jiao X, Peng Q, Jiang F, Huang Y, Zhang J, Yao F (2013) Antibiotic resistance in Pseudomonas aeruginosa is associated with decreased fitness. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 31(2–3):347–354. doi:10.1159/000343372

    Article  CAS  Google Scholar 

  39. Sanchez P, Linares JF, Ruiz-Diez B, Campanario E, Navas A, Baquero F, Martinez JL (2002) Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 50(5):657–664

    Article  CAS  PubMed  Google Scholar 

  40. Olivares J, Alvarez-Ortega C, Martinez JL (2014) Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrob Agents Chemother 58(7):3904–3913. doi:10.1128/AAC.00121-14

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kugelberg E, Lofmark S, Wretlind B, Andersson DI (2005) Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemother 55(1):22–30. doi:10.1093/jac/dkh505

    Article  CAS  PubMed  Google Scholar 

  42. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mulet X, Cabot G, Ocampo-Sosa AA, Dominguez MA, Zamorano L, Juan C, Tubau F, Rodriguez C, Moya B, Pena C, Martinez-Martinez L, Oliver A, Spanish Network for Research in Infectious D (2013) Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother 57(11):5527–5535. doi:10.1128/AAC.01481-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taccone FS, Cotton F, Roisin S, Vincent JL, Jacobs F (2012) Optimal meropenem concentrations to treat multidrug-resistant Pseudomonas aeruginosa septic shock. Antimicrob Agents Chemother 56(4):2129–2131. doi:10.1128/AAC.06389-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghazi IM, Crandon JL, Lesho EP, McGann P, Nicolau DP (2015) Efficacy of humanized high-dose meropenem, cefepime, and levofloxacin against Enterobacteriaceae isolates producing Verona integron-encoded metallo-beta-lactamase (VIM) in a murine thigh infection model. Antimicrob Agents Chemother 59(11):7145–7147. doi:10.1128/AAC.00794-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martinez-Ramos I, Mulet X, Moya B, Barbier M, Oliver A, Alberti S (2014) Overexpression of MexCD-OprJ reduces Pseudomonas aeruginosa virulence by increasing its susceptibility to complement-mediated killing. Antimicrob Agents Chemother 58(4):2426–2429. doi:10.1128/AAC.02012-13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schiller NL, Joiner KA (1986) Interaction of complement with serum-sensitive and serum-resistant strains of Pseudomonas aeruginosa. Infect Immun 54(3):689–694

    CAS  PubMed  PubMed Central  Google Scholar 

  48. She P, Chen L, Qi Y, Xu H, Liu Y, Wang Y, Luo Z, Wu Y (2016) Effects of human serum and apo-Transferrin on Staphylococcus epidermidis RP62A biofilm formation. Microbiologyopen. doi:10.1002/mbo3.379

    Google Scholar 

  49. Cho HH, Kwon KC, Kim S, Koo SH (2014) Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Lab Med 34(4):286–292. doi:10.3343/alm.2014.34.4.286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kulasekara BR, Kulasekara HD, Wolfgang MC, Stevens L, Frank DW, Lory S (2006) Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa. J Bacteriol 188(11):4037–4050. doi:10.1128/JB.02000-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pena C, Cabot G, Gomez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodriguez-Bano J, Rodriguez-Lopez F, Tubau F, Martinez-Martinez L, Oliver A, Spanish Network for Research in Infectious D (2015) Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis Off Publ Inf Dis Soc Am 60(4):539–548. doi:10.1093/cid/ciu866

    Article  Google Scholar 

  52. Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP (2014) Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Crit Care 18(6):668. doi:10.1186/s13054-014-0668-9

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wareham DW, Curtis MA (2007) A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. Int J Med Microbiol IJMM 297(4):227–234. doi:10.1016/j.ijmm.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  54. Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR (2001) Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147(Pt 10):2659–2669. doi:10.1099/00221287-147-10-2659

    Article  CAS  PubMed  Google Scholar 

  55. Bradbury RS, Reid DW, Inglis TJ, Champion AC (2011) Decreased virulence of cystic fibrosis Pseudomonas aeruginosa in Dictyostelium discoideum. Microbiol Immunol 55(4):224–230. doi:10.1111/j.1348-0421.2011.00314.x

    Article  CAS  PubMed  Google Scholar 

  56. Hogardt M, Heesemann J (2010) Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol IJMM 300(8):557–562. doi:10.1016/j.ijmm.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  57. Vidya P, Smith L, Beaudoin T, Yau YC, Clark S, Coburn B, Guttman DS, Hwang DM, Waters V (2016) Chronic infection phenotypes of Pseudomonas aeruginosa are associated with failure of eradication in children with cystic fibrosis. Eur J Clin Microbiol Infect Dis 35(1):67–74. doi:10.1007/s10096-015-2509-4

    Article  CAS  PubMed  Google Scholar 

  58. Rau MH, Hansen SK, Johansen HK, Thomsen LE, Workman CT, Nielsen KF, Jelsbak L, Hoiby N, Yang L, Molin S (2010) Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ Microbiol 12(6):1643–1658. doi:10.1111/j.1462-2920.2010.02211.x

    CAS  PubMed  Google Scholar 

  59. Jones AM, Govan JR, Doherty CJ, Dodd ME, Isalska BJ, Stanbridge TN, Webb AK (2003) Identification of airborne dissemination of epidemic multiresistant strains of Pseudomonas aeruginosa at a CF centre during a cross infection outbreak. Thorax 58(6):525–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wainwright CE, France MW, O’Rourke P, Anuj S, Kidd TJ, Nissen MD, Sloots TP, Coulter C, Ristovski Z, Hargreaves M, Rose BR, Harbour C, Bell SC, Fennelly KP (2009) Cough-generated aerosols of Pseudomonas aeruginosa and other Gram-negative bacteria from patients with cystic fibrosis. Thorax 64(11):926–931. doi:10.1136/thx.2008.112466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Willmann M, Bezdan D, Zapata L, Susak H, Vogel W, Schroppel K, Liese J, Weidenmaier C, Autenrieth IB, Ossowski S, Peter S (2015) Analysis of a long-term outbreak of XDR Pseudomonas aeruginosa: a molecular epidemiological study. J Antimicrob Chemother 70(5):1322–1330. doi:10.1093/jac/dku546

    Article  CAS  PubMed  Google Scholar 

  62. Inglis TJ, Benson KA, O’Reilly L, Bradbury R, Hodge M, Speers D, Heath CH (2010) Emergence of multi-resistant Pseudomonas aeruginosa in a Western Australian hospital. J Hosp Infect 76(1):60–65. doi:10.1016/j.jhin.2010.01.026

    Article  CAS  PubMed  Google Scholar 

  63. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100(14):8484–8489. doi:10.1073/pnas.0832438100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi H, Trinh Q, Xu W, Zhai B, Luo Y, Huang K (2012) A universal primer multiplex PCR method for typing of toxinogenic Pseudomonas aeruginosa. Appl Microbiol Biotechnol 95(6):1579–1587. doi:10.1007/s00253-012-4277-8

    Article  CAS  PubMed  Google Scholar 

  65. Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC (2010) Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J Med Microbiol 59(Pt 8):881–890. doi:10.1099/jmm.0.018283-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Günther.

Ethics declarations

All authors report no financial or non-financial conflicts of interest. All used isolates were routinely collected in the microbiology laboratory of the Heidelberg University Hospital and stored at −70 °C. The present study thus is descriptive of a bacterial collection of those isolates and additional environmental isolates. Data collected from patients was anonymized and restricted to possible clinical symptoms of infection. Ethical approval and informed consent statements were therefore not required. The study was conducted without additional funding.

Additional information

S. J. Kaiser and N. T. Mutters contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

Heat map of the analyzed features for all isolates and groups used in this study. Yellow indicates values close to the median, while red indicates values associated with elevated feature characteristics and green low feature characteristics. (PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, S.J., Mutters, N.T., DeRosa, A. et al. Determinants for persistence of Pseudomonas aeruginosa in hospitals: interplay between resistance, virulence and biofilm formation. Eur J Clin Microbiol Infect Dis 36, 243–253 (2017). https://doi.org/10.1007/s10096-016-2792-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2792-8

Keywords

Navigation