Skip to main content
Log in

Sesquiterpene lactones and scopoletins from Artemisia scoparia Waldst. & Kit. and their angiotensin I-converting enzyme inhibitory activities

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Ten compounds, including a new guaiane-type sesquiterpene lactone, were isolated from the aerial parts of Artemisia scoparia. The structure of the new compound was determined to be 5-hydroxyguaia-3(4),11(13),10(14)-trien-6α,12-olide, named scoparanolide. Six known sesquiterpene lactones [estafiatone, 3β,4α-dihydroxyguaia-11(13),10(14)-dien-6α,12-olide, estafiatin, preeupatundin, 3β-hydroxycostunolide, and ludovicin B] and three known coumarin derivatives (scopoletin, scoparone, and isofraxidin) were identified by nuclear magnetic resonance and electrospray ionization mass spectroscopy. Six known sesquiterpene lactones were found for the first time in this plant. The angiotensin I-converting enzyme inhibitory activities of coumarin derivatives and scopoletins were significantly higher compared to those of sesquiterpene lactones and quercetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen YL, Huang HC, Weng YI, Yu YJ, Lee YT. Morphological evidence for the antiatherogenic effect of scoparone in hyperlipidemic diabetic rabbit. Cardiavasc. Res. 28: 1679–1685 (1994)

    Article  CAS  Google Scholar 

  2. Yahagi T, Yakura N, Matsuzaki K, Kitanaka S. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in Raw 264.7 cells. J. Nat. Med. 68: 414–420 (2014)

    Article  CAS  Google Scholar 

  3. Oh HK, Beon MS, Lee MW, Whang BC. Ecological motif on the salt-water plants of brackish area in Buandam. Korean J. Environ. Eco. 20: 311–318 (2006)

    Google Scholar 

  4. Gillani AUH, Janbaz KH. Protective effect of Artemisia scoparia extract against acetaminophen-induced hepatotoxicity. Gen. Pharmacol. 24: 1455–1458 (1993)

    Article  Google Scholar 

  5. Lee YM, Hsiao G, Chang JW, Sheu JR, Yen MH. Scoparone inhibits tissue factor expression in lipopolysaccharide-activated human umbilical vein endothelial cells. J. Biomed. Sci. 10: 518–525 (2003)

    Article  CAS  Google Scholar 

  6. Pan SL, Huang YW, Guh JH, Chang YL, Peng CY, Teng CM. Esculetin inhibits rasmediated cell proliferation and attenuates vascular restenosis following angioplasty in rats. Biochem. Pharmacol. 65: 1897–1905 (2003)

    Article  CAS  Google Scholar 

  7. Cha JD, Jeong MR, Jeong SI, Moon SE, Kim JY, Kil BS, Song YH. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med. 71: 186–190 (2005)

    Article  CAS  Google Scholar 

  8. Yoon WJ, Lee JA, Kim JY, Oh DJ, Jung YH, Lee WJ, Park SY. Antioxidant activities and anti-inflammatory effects on Artemisia scoparia. Korean J. Pharmacogn. 37: 235–240 (2006)

    CAS  Google Scholar 

  9. Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK. In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity. Food Chem. Toxicol. 48: 1040–1044 (2010)

    Article  CAS  Google Scholar 

  10. Habib M, Waheed L. Evaluation of anti-nociceptive, anti-inflammatory and antipyretic activities of Artemisia scoparia hydromethanolic extract. J. Ethnopharmacol. 145: 18–24 (2013)

    Article  Google Scholar 

  11. Khan K, Fatima H, Taqi MM, Zia M, ur-Rehman T, Mirza B, Haq I. Phytochemical and in vitro biological evaluation of Artemisia scoparia Waldst. & Kit for enhanced extraction of commercially significant bioactive compounds. J. Appl. Res. Med. Aromat. Plants 2: 77–86 (2015)

    Article  Google Scholar 

  12. Wang ZQ, Zhang XH, Yu Y, Tipton RC, Raskin I, Ribnicky D, Johnson W, Cefalu WT. Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by enhancing hepatic insulin and AMPK signaling independently of FGF21 pathway. Metabolism 62: 1239–1249 (2013)

    Article  CAS  Google Scholar 

  13. Jamwal KS, Sharma ML, Chandhoke N, Ghatak BJ. Pharmacological action of 6,7-dimethoxycoumarin (scoparone) isolated from Artemisia scoparia, Waldst & Kit. Indian J. Med. Res. 60: 763–771 (1972)

    CAS  Google Scholar 

  14. Cho JY, Park KH, Hwang DY, Lily J, Park YK, Kim SY, Kim HR, Moon JH, Ham KS. Antihypertensive effects of Artemisia scoparia Waldst in spontaneously hypertensive rats and identification of angiotensin I converting enzyme inhibitors. Molecules 20: 19789–19804 (2015)

    Article  CAS  Google Scholar 

  15. Cushman D, Cheung H. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637–1648 (1971)

    Article  CAS  Google Scholar 

  16. Cho JY, Yang X, Park KH, Park HJ, Park SY, Moon JH, Ham KS. Isolation and identification of antioxidative compounds from Suaeda japonica and their antioxidative activities. Food Sci. Biotechnol. 22: 1547–1557 (2013)

    Article  CAS  Google Scholar 

  17. Ma CM, Ke W, Sun ZL, Peng JY, Li ZX, Zhou X, Fan GR, Huang CG. Large-scale isolation and purification of scoparone from Herba artemisiae scopariae by high-speed counter-current chromatography. Chromatographia 64: 83–87 (2006)

    Article  CAS  Google Scholar 

  18. Liu Z, Li S, Han N, Sun D, Gao Y, Yin Y. Studies on the chemical constituents of the vines of Streptocaulon juventas (Lour) Merr. Asian J. Tradit. Med. 3: 193–198 (2008)

    CAS  Google Scholar 

  19. Jung CM, Kwon HC, Choi SZ, Lee JH, Lee DJ, Ryu SN, Lee KR. Phytochemical constituents of Ainsliaea acerifolia. Korean J. Pharmacogn. 31: 125–129 (2000)

    CAS  Google Scholar 

  20. Sigstad EE, Catalan CAN, Gutierrez AB, Diaz JG, Goedken VL, Herz W. Guaianolides and germacranolides from Stevia grisebachiana. Phytochemistry 30: 1933–1940 (1991)

    Article  CAS  Google Scholar 

  21. Adekenov SM, Mukhametzhanov MN, Kagarlitskii AD, Turmukhambetov AZ. A chemical investigation of Achillea nobilis. Chem. Nat. Compd. 20: 568–571 (1984)

    Article  Google Scholar 

  22. Hilmi F, Stricher O, Heilmann J. New cytotoxic sesquiterpene lactones from Warionia saharae. Planta Med. 69: 462–464 (2003)

    Article  CAS  Google Scholar 

  23. Hajdú Z, Zupkó I, Réthy B, Forgo P, Hohmann J. Bioactivity-guided isolation of cytotoxic sesquiterpenes and flavonoids from Anthemis ruthenica. Planta Med. 6: 94–96 (2010)

    Article  Google Scholar 

  24. Hu J, Zhu Q, Jia, Z. Assignment of the 1H and 13C-NMR spectra of ludovicin B by two-dimensional NMR techniques. Bull. Soc. Chim. Belg. 106: 141–146 (1997)

    CAS  Google Scholar 

  25. Salvetti A, Pedrinelli R, Arzilli F, Abdel-Haq B, Magagna A, Lucarina A, Graziadei L, Nuccorini A, Taddei S. Angiotensin-converting enzyme inhibitors in hypertension: A review. Int. J. Clin. Pharmacol. Res. 5: 429–438 (1985)

    CAS  Google Scholar 

  26. Simaratanamongkol A, Umehara K, Noguchi H, Panichayupakaranant P. Identification of a new angiotensin-converting enzyme (ACE) inhibitor from Thai edible plants. Food Chem. 165: 92–97 (2014)

    Article  CAS  Google Scholar 

  27. Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 11: 567–579 (2007)

    Article  Google Scholar 

  28. Gonzáleza R, Ballesterc I, López-Posadasa R, Suárezb MD, Zarzuelob A, Martínez-Augustinb O, Sánchez De Medinaa F. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 51: 331–362 (2011)

    Article  Google Scholar 

  29. Merfort I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr. Drug Targets 12: 1560–1573 (2011)

    Article  CAS  Google Scholar 

  30. Gach K, Dlugosz A, Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. N-S Arch. Pharmacol. 388: 477–486 (2015)

    Article  CAS  Google Scholar 

  31. Ivanescu B, Miron A, Corciova A. Sesquiterpene lactones from Artemisia genus: Biological activities and methods of analysis. J. Anal. Methods Chem. 2015: Article ID 247685 (2015)

    Google Scholar 

  32. Sanchez-Viesca F, Romo J. Estafiatin, a new sesquiterpene lactone isolated from Artemisia mexicana (Willd). Tetrahedron 19: 1285–1291 (1963)

    Article  CAS  Google Scholar 

  33. Lee KH, Geissman TA. Sesquitepene lactones of Artemisia constituents of A. ludoviciana ssp. Mexicana. Phytochemistry 9: 403–408 (1970)

    Article  CAS  Google Scholar 

  34. Hu J, Zhu Q, Bai S, Jia Z. New eudesmane sesquiterpene and other constituents from Artemisia mongolica. Planta Med. 62: 477–478 (1996)

    Article  CAS  Google Scholar 

  35. Ahmed AA, El-Moghazy SA, El-Shanawany MA, Abdel-Ghani HF, Karchesy J, Sturtz G, Dalley K, Pare PW. Polyol monoterpenes and sesquiterpene lactones from the Pacific Northwest plant Artemisia suksdorfii. J. Nat. Prod. 67: 1705–1710 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Sik Ham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, JY., Jeong, SJ., Lee, H.L. et al. Sesquiterpene lactones and scopoletins from Artemisia scoparia Waldst. & Kit. and their angiotensin I-converting enzyme inhibitory activities. Food Sci Biotechnol 25, 1701–1708 (2016). https://doi.org/10.1007/s10068-016-0261-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0261-x

Keywords

Navigation