Skip to main content
Log in

Uncertainties in estimating the roughness coefficient of rock fracture surfaces

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Joint roughness has a critical role in the deformation behavior of discontinuous rock masses. Several subjective (visual comparison) and quantitative (statistical and fractal) approaches have been proposed for estimating rock joint roughness coefficient (JRC). Using a large collection of 223 published joint profiles, this study investigates variability of the JRC estimates by these approaches. Among the profile parameters, maximum height (R z), ultimate slope (λ), and fractal dimension (D h–L, determined using the hypotenuse leg method) show a lower sensitivity to the sampling interval than the root mean square of the first deviation (Z 2), profile elongation index (δ), fractal dimension (D c, determined using the compass-walking method), and standard deviation of the angle i (σ i ). Accordingly, this study proposes two separate sets of equations for quantitatively estimating JRC. The performances of these equations are examined by performing direct shear tests on 23 rock joint samples. The subjective approach is found to underestimate JRC by less than two units because it ignores (1) the main trend of the compared profile and (2) the limited scope of the standard profiles. Following these results, the visual comparison chart is updated by explicitly adding a scale bar for the y-axes of the standard profiles. Several basic rules for visual comparisons are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Z 2 :

Root mean square of the first deviation of the profile

SF:

Structure function of the profile

σ i :

Standard deviation of the angle i

R z :

Maximum height of the profile

L :

Projected length of the profile

L t :

Total length of the profile

λ :

Ultimate slope of the profile

δ :

Profile elongation index

D :

Fractal dimension of the profile

D c :

Fractal dimension determined via compass-walking method

D h–L :

Fractal dimension determined via hypotenuse leg (h–L) method

SI:

Sampling interval

θ *max :

Maximum apparent asperity inclination

JRC:

Joint roughness coefficient

JRCv :

JRC estimated via visual comparison

JRCe :

JRC estimated via quantitative method

γ :

Deviation of JRCv from JRCe (γ = JRCv − JRCe)

References

  • Aydin A (2009) Suggested method for determination of the Schmidt hammer rebound hardness: Revised version. Int J Rock Mech Min Sci 46(3):627–634

    Article  Google Scholar 

  • Bandis SC (1980) Experimental studies of scale effects on shear strength and deformation of rock joint. Ph.D. thesis, Univ. of Leeds, p 385

  • Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 6:249–268

    Article  Google Scholar 

  • Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7:287–332

    Article  Google Scholar 

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54

    Article  Google Scholar 

  • Beer AJ, Stead D, Coggan JS (2002) Estimation of the joint roughness coefficient (JRC) by visual comparison. Rock Mech Rock Eng 35(1):65–74

    Article  Google Scholar 

  • Brown ET (1981) Rock characterization testing and monitoring (ISRM suggested methods). Pergramon Press, Oxford

    Google Scholar 

  • Carr JR, Warriner JB (1987) Rock mass classification of joint roughness coefficient. In: 28th US Symp on Rock Mechanics. Tucson, pp 72–86

  • Du SG (1995) Mathematical expression of JRC modified straight edge. J Eng Geol 4(2):36–43 (in Chinese)

    Google Scholar 

  • Gao Y, Wong LNY (2015) A modified correlation between roughness parameter Z2 and the JRC. Rock Mech Rock Eng 48(1):387–396

    Article  Google Scholar 

  • Grasselli G (2001) Shear strength of rock joints based on quantified surface description. PhD thesis, Ecole Polytechnique Federale De Lausanne (EPFL), p 124

  • Grasselli G, Egger P (2003) Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min Sci 40(1):25–40

    Article  Google Scholar 

  • Herda HHW (2006) An algorithmic 3D rock roughness measure using local depth measurement clusters. Rock Mech Rock Eng 39(2):147–158

    Article  Google Scholar 

  • Jia HQ (2011) Experimental research on joint surface state and the characteristics of shear failure. MSc. thesis, Central South Univercity, Changsha China, p 78 (in Chinese)

  • Kulatilake PHSW, Shou G, Huang TH, Morgan RM (1995) New peak shear strength criteria for anisotropic rock joints. Int J Rock Mech Min Sci Geomech Abstr 32(7):673–697

    Article  Google Scholar 

  • Lee YH, Carr JR, Bars DJ, Hass CJ (1990) The fractal dimension as a measure of the roughness of rock discontinuity profiles. Int J Rock Mech Min Sci Gemech Abstr 27(6):453–464

    Article  Google Scholar 

  • Li YR, Huang RQ (2015) Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces. Int J Rock Mech Min Sci 75:15–22

    Google Scholar 

  • Li YR, Zhang YB (2015) Relationship between joint roughness coefficient and statistical parameters of rock fracture surfaces. Int J Rock Mech Min Sci 77:27–35

    Google Scholar 

  • Maerz NH, Franklin JA, Bennett CP (1990) Joint roughness measurement using shadow profilometry. Int J Rock Mech Min Sci Geomech Abstr 27:329–343

    Article  Google Scholar 

  • Odling NE (1994) Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mech Rock Eng 27(3):135–153

    Article  Google Scholar 

  • Rasouli V, Hosseinian A (2011) Correlations developed for estimation of hydraulic parameters of rough fractures through the simulation of JRC flow channels. Rock Mech Rock Eng 44:447–461

    Article  Google Scholar 

  • Seidel JP, Haberfield CM (1995) The application of energy to the determination of the sliding resistance of rock joints. Rock Mech Rock Eng 24(4):211–226

    Article  Google Scholar 

  • Tatone BSA (2009) Quantitative characterization of natural rock discontinuity roughness in situ and in the laboratory. MASc. thesis, University of Toronto, Toronto. http://hdl.handle.net/1807/18959

  • Tatone BSA, Grasselli G (2010) A new 2D discontinuity roughness parameter and its correlation with JRC. Int J Rock Mech Min Sci 47:1391–1400

    Article  Google Scholar 

  • Tatone BSA, Grasselli G (2013) An investigation of discontinuity roughness scale dependency using high-resolution surface measurements. Rock Mech Rock Eng 46:657–681

    Article  Google Scholar 

  • Tse R, Cruden DM (1979) Estimating joint roughness coefficients. Int J Rock Mech Min Sci Geomech Abstr 16:303–307

    Article  Google Scholar 

  • Turk N, Greig MJ, Dearman WR, Amin FF (1987) Characterization of joint surfaces by fractal dimension. In: 28th US Symp on Rock Mechanics, Tucson, pp 1223–1236

  • Vladimir G, Tomas D (2011) Stanovenie koeficienta drsnosti pulin (JRC) metodou blizkej digitalnej fotogrametrie. Acta Geol Slovaca 3(2):163–172

    Google Scholar 

  • Wang Q (1982) Study on determination of rock joint roughness by using elongation rate R. Proc. Underg. Constr, Jinchuan, pp 343–348

    Google Scholar 

  • Xie HP, Pariseau WG (1994) Fractal estimation of rock joint roughness coefficient. Sci China (Ser B) 24(5):524–530

    Google Scholar 

  • Yang ZY, Lo SC, Di CC (2001) Reassessing the joint roughness coefficient (JRC) estimation using Z2. Rock Mech Rock Eng 34:243–251

    Article  Google Scholar 

  • Yu XB, Vayssade B (1991) Joint profiles and their roughness parameters. Int J Rock Mech Min Sci Geomech Abstr 28:333–336

    Article  Google Scholar 

  • Zhang GC, Karakus M, Tang HM, Ge YF, Zhang L (2014) A new method estimating the 2D joint roughness coefficient for discontinuity surfaces in rock masses. Int J Rock Mech Min Sci 72:191–198

    Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (No. 51309176). The authors thank Messrs. Mo, P. and He, S.D. for their help in preparing the data. The digital datasets can be provided to researchers upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanrong Li.

Appendix

Appendix

The definition and calculation of some of the parameters used in this paper: Z 2: Root mean square of the first deviation of the profile (Tse and Cruden 1979)

$$ {\text{Z}}_{2} = \left[ {\frac{1}{\text{L}}\mathop \int \limits_{{{\text{x}} = 0}}^{{{\text{x}} = {\text{L}}}} \left( {\frac{\text{dy}}{\text{dx}}} \right)^{2} {\text{dx}}} \right]^{{\frac{1}{2}}} = \left[ {\frac{1}{\text{L}}\mathop \sum \limits_{{{\text{i}} = 1}}^{{{\text{N}} - 1}} \frac{{({\text{y}}_{{{\text{i}} + 1}} - {\text{y}}_{\text{i}} )^{2} }}{{{\text{x}}_{{{\text{i}} + 1}} - {\text{x}}_{\text{i}} }}} \right]^{1/2} $$

where dx is the increment of x of the profile; dy is the increment of y of the profile; N is the number of evenly spaced sampling points; and x i and y i are the x- and y-coordinates of sampling point.

σ i : Standard deviation of the angle i (Yu and Vayssade 1991)

$$ \begin{aligned} \sigma_{i} = { \tan }^{ - 1} \left[ {\frac{1}{L}\mathop \int \limits_{x = 0}^{x = L} \left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} - {\text{tan }}i_{\text{ave}} } \right)^{2} {\text{d}}x} \right]^{{\frac{1}{2}}} \hfill \\ i_{\text{ave}} = \frac{1}{L}\mathop \int \limits_{x = 0}^{x = L} { \tan }^{ - 1} \left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right){\text{d}}x \hfill \\ \end{aligned} $$

R z: Maximum height of a profile, equals to the vertical distance between the highest peak and the lowest valley.

L: The projected length of the profile

$$ L = \mathop \sum \limits_{i = 1}^{N - 1} \left( {x_{i + 1} - x_{i} } \right). $$

λ: Ultimate slope of the profile, λ = R z/L.

δ: Profile elongation index, δ = (L tL)/L (Maerz et al. 1990)

$$ {\text{L}}_{\text{t}} = \mathop \sum \limits_{{{\text{i}} = 1}}^{{{\text{N}} - 1}} \sqrt {({\text{x}}_{{{\text{i}} + 1}} - {\text{x}}_{\text{i}} )^{2} + \left( {{\text{y}}_{{{\text{i}} + 1}} - {\text{y}}_{\text{i}} } \right)^{2} } $$

D c: Fractal dimension determined by compass-walking method (Maerz et al. 1990)

$$ D = - \frac{\log (n + f/r)}{\log r}. $$
figure a

where n is the number of steps for walking through a joint profile by a divider with a span of r; and f is the remaining length shorter than r after excluding the length of nr.

D h–L: Fractal dimension determined by the hypotenuse leg (h–L) (method (Li and Huang 2015)

$$ D = \frac{\log 4}{{\log [2(1 + \cos (\tan^{ - 1} \frac{2h}{l}))]}}({\text{where}},\;h = \frac{1}{M}\mathop \sum \limits_{i = 1}^{M} h_{i} \;\;{\text{and}}\;\;l = \frac{1}{M}\mathop \sum \limits_{i = 1}^{M} L_{i} . $$
figure b

where l and h are the average base length and the average height of asperities of a joint, respectively; and M is the number of asperities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, Q. & Aydin, A. Uncertainties in estimating the roughness coefficient of rock fracture surfaces. Bull Eng Geol Environ 76, 1153–1165 (2017). https://doi.org/10.1007/s10064-016-0994-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0994-z

Keywords

Navigation