Skip to main content
Log in

Landslide hazard assessment and judgment of reliability: a geomechanical approach

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Landslide hazard maps are often defined as reliable a posteriori, in accordance with the real landslides occurring from the time of the map production. However, to be useful for planning, a reliability judgment concerning the hazard mapping should be a priori, based on data uncertainty characterization, and must be driven by the knowledge of the slope instability mechanisms. The landslide hazard assessment, when based on the deterministic diagnosis of the processes, may really lead to really providing clues about how and why the slope could fail (landslide susceptibility) and, possibly, when (landslide hazard). Such deterministic assessment can be pursued only through the interpretation and the geo-hydro-mechanical modelling of the slope equilibrium. In practice, though, the landslide hazard assessment is still seldom dealt with slope modelling, in particular when it addresses intermediate to regional zoning. The paper firstly offers an overview of the key steps of a methodology called the multiscalar method for landslide mitigation, MMLM, which that is a methodological approach for the intermediate to regional landslide hazard assessment using the hydro-mechanical diagnoses of landsliding. The validation of the MMLM to the geologically complex outer sectors of the Southern Apennines (Daunia-Lucanian mountains; Italy) is also delineated, together with a practical approach to incorporate a reliability judgment in the landslide susceptibility/hazard mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58:21–44

    Article  Google Scholar 

  • Anbalagan R, Singh B (1996) Landslide hazard and risk assessment mapping of mountainous terrains—a case study from Kumaun Himalaya, India. Eng Geol 43(4):237–246

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2:3–14

    Article  Google Scholar 

  • BSI British Standards (1986) Code of practice for foundations. BSI, BS8004.

  • Cafaro F, Cherubini C (2002) Large sample spacing in evaluation of vertical strength variability of clayey soil. J Geotech Geoenviron Eng 128(7):558–568

    Article  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evolution. Math Geol 15:403–427

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 2:172–183

    Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177

    Article  Google Scholar 

  • Cascini L (2015) Geotechnics for urban planning and land use management. Ital Geotech J 49(4):7–62

    Google Scholar 

  • Cascini L, Ferlisi S (2003) Occurrence and consequences of flowslides: a case study. In: International Conference on “Fast Slope Movements—Prediction and Prevention for Risk Mitigation”, Napoli, 1:85–92

  • Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  • Cotecchia F, Vitone C, Cafaro F, Santaloia F (2007) The mechanical behaviour of intensely fissured high plasticity clays from Daunia. In: 2nd Inter Workshop on Characterisation and Engineering Properties on Natural Soils, Singapore. Taylor & Francis, London, pp 1975–2003

  • Cotecchia F, Mitaritonna G, Elia G, Santaloia F, Lollino P (2009) Meccanismi di frane in pendi in argille dell’Italia Meridionale ed effetti delle precipitazioni meteoriche. In: 1st Int Workshop on Landslides “Rainfall induced landslide and nowcasting models for early warning system”, Naples, Italy, pp 31–43

  • Cotecchia F, Santaloia F, Lollino P, Vitone C, Mitaritonna G (2010) Deterministic landslide hazard assessment at regional scale. Geoflorida 2010 Advances in Analysis, Modelling and Design, West Palm Beach, Florida, pp 3130–3139

  • Cotecchia F, Santaloia F, Lollino P (2011) Slow landsliding as effect of hydro-mechanical coupled processes: examples of resulting damages and mitigation strategies. In: 2th Italian Workshop on Landslide, Naples, Italy, pp 71–79

  • Cotecchia F, Santaloia F, Lollino P, Mitaritonna G, Vitone C (2012) Applicazione delle linee guida JTC-1 secondo un approccio multi-scalare. In: Cascini L (ed) Criteri di zonazione della suscettibilità e della pericolosità da frane innescate da eventi estremi (piogge e sisma). Composervice srl, Padova, pp 46–51

    Google Scholar 

  • Cotecchia F, Ferlisi S, Santaloia F, Vitone C, Lollino P, Pedone G, Bottiglieri O (2014a) La diagnosi del meccanismo di frana nell’analisi del rischio’. Panel lecture, XXV Convegno Nazionale di Geotecnica, ‘La geotecnica nella difesa del territorio e delle infrastrutture dalle calamità naturali’, Baveno 4-6 Giugno 2014, pp 167–186

  • Cotecchia F, Pedone G, Bottiglieri O, Santaloia F, Vitone C (2014b) Slope-atmosphere interaction in a tectonized clayey slope: a case study. Ital Geotech J 1:34–61

    Google Scholar 

  • Cotecchia F, Vitone C, Santaloia F, Pedone G, Bottiglieri O (2015) Slope instability processes in intensely fissured clays: case histories in the Southern Apennines. Landslides 12(5):877–893

    Article  Google Scholar 

  • Cotecchia F, Santaloia F, Lollino P, Vitone C, Pedone G, Bottiglieri O (2016a) From a phenomenological to a geomechanical approach to landslide hazard analysis. Eur J Env Civil Eng 20(9):1004–1031

    Article  Google Scholar 

  • Cotecchia F, Santaloia F, Lollino P, Vitone C, Pedone G, Cafaro O, Bottiglieri O (2016b) A geomechanical approach to landslide hazard assessment: the Multiscalar Method for Landslide Mitigation. Proc Eng 158:452–457

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide Types and processes. In: Turner AK, Schuster RL (eds.) Landslide-Investigation and Mitigation, Transportation Research Board, Special Report 247, National Research Council, USA, pp 36–75

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Duncan JM (2000) Factor of safety and reliability in geotechnical engineering. J Geotech Geoenviron Eng 126(4):307–316

    Article  Google Scholar 

  • Fall M, Azzam R, Noubactep C (2006) A multi-method approach to study the stability of natural slopes and landslide susceptibility. Eng Geol 82:241–263

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning, Commentary. Eng Geol 102:99–111

    Article  Google Scholar 

  • Fookes PG, Denness B (1969) Observational studies on fissure patterns in cretaceous sediments of South-East England. Géotechnique 19(4):453–477

    Article  Google Scholar 

  • Griffiths DV, Huang J, Fenton GA (2009) Influence of spatial variability on slope reliability using 2-D random fields. J Geotech Geoenviron Eng 135(10):1367–1378

    Article  Google Scholar 

  • Guzzetti F, Mondini AS, Cardinali M, Fiorucci F, Santangelo M, Chan KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Hutchinson JN (1988) Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard Ch (ed) Landslides. Proceedings 5th International Conference on Landslides, Lausanne, 1, pp 3–35

  • IUGS (1997) Quantitative risk assessment for slopes and landslides—the state of the art. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam, pp 3–12

    Google Scholar 

  • ISRM (1993) Metodologie per la descrizione quantitativa delle discontinuità nelle masse rocciose. Riv It Geot 2:151–197

    Google Scholar 

  • Kawa M (2015) Reliability analysis of bearing capacity of square footing on soil with strength anisotropy due to layered microstructure. Studia Geotechn Mech 37(4):19–28

    Google Scholar 

  • Kienholz H (1978) Maps of geomorphology and natural hazards of Grindelwald, Switzerland, scale 1:10,000. Arctic Alpine Res 10:169–184

    Article  Google Scholar 

  • Kulhawy FH (1992) On the evaluation of soil properties. ASCE Geotech Spec Publ 31:95–115

    Google Scholar 

  • Kuriakose SL, Devkota S, Rossiter DG, Jetten VJ (2009) Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. Catena 79(1):27–38

    Article  Google Scholar 

  • Lacasse S, Nadim F (2009) Landslide Risk Assessment and mitigation strategy. In: Sassa K, Canuti P (eds) Landslide disaster risk reduction. Springer, Heidenberg, pp 31–61

    Chapter  Google Scholar 

  • Leroueil S (2001) Natural slopes and cuts: movement and failure mechanisms. Geotechnique 51(3):197–243

    Article  Google Scholar 

  • Lollino P, Elia G, Cotecchia F, Mitaritonna G (2010) Analysis of landslide reactivation mechanisms in Daunia clay slopes by means of limit equilibrium and FEM methods. Geoflorida 2010 Advances in Analysis, Modelling and Design, West Palm Beach. Geotechnical Special Publication, ASCE, Florida, pp 3130–3139

    Google Scholar 

  • Lollino P, Cotecchia F, Mitaritonna G, Vitone C, Santaloia F (2012a) Applicazione dei metodi avanzati del fronte appenninico apulo-lucano secondo l’approccio multiscalare: analisi di III livello. In: Cascini L (ed) Criteri di zonazione della suscettibilità e della pericolosità da frane innescate da eventi estremi (piogge e sisma). Composervice srl, Padova, pp 357–371

    Google Scholar 

  • Lollino P, Mitaritonna G, Vitone C, Cotecchia F, Santaloia F (2012b) Applicazione dei metodi avanzati al fronte appenninico apulo-lucano: analisi di II livello della metodologia multiscalare. In: Cascini L (ed) Criteri di zonazione della suscettibilità e della pericolosità da frane innescate da eventi estremi (piogge e sisma). Composervice srl, Padova, pp 219–230

    Google Scholar 

  • Lollino P, Cotecchia F, Elia G, Santaloia F (2016) Interpretation of landslide mechanisms based on numerical modelling: two case-histories. Eur J Env Civil Eng 20(9):1032–1053

    Article  Google Scholar 

  • Mancini F, Ceppi C, Ritrovato G (2008) Analisi del rischio da frana in ambiente GIS: Il caso del Sub-Appennino Dauno (Puglia). In: 12th Natational Conference of ASITA, L’Aquila, Italy, pp 1393–1398

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Morgenstern NR, Eigenbrod KD (1974) Classification of argillaceous soils and rocks. J Geotech Eng Div, ASCE 100(10):1137–1156

    Google Scholar 

  • Nadim F, Kvalstad TJ, Guttormsen T (2005) Quantification of risks associated with seabed instability at Ormen Lange. Mar Pet Geol 22:311–318

    Article  Google Scholar 

  • Palmisano F (2011) Landslide structural vulnerability of masonry buildings, PhD Thesis, Technical University Bari, Italy

  • Patacca E, Scandone P (2007) Geological interpretation of the CROP-04 seismic line. In: Mazzotti A, Patacca E, Scandone P (eds) Results of the CROP Project, Sub-project CROP-04 So 7, Southern Apennines, Italy, pp 297–315

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930

    Article  Google Scholar 

  • Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can Geotech J 36:612–624

    Article  Google Scholar 

  • Rahardjo H, Ong TH, Rezaur RB, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenviron Eng ASCE 133(12):1532–1543

    Article  Google Scholar 

  • Santaloia F, Cotecchia F, Vitone C (2012a) Applicazione dei metodi avanzati al fronte appenninico apulo-lucano: analisi di I livello. In: Cascini L (ed) Criteri di zonazione della suscettibilità e della pericolosità da frane innescate da eventi estremi (piogge e sisma). Composervice srl, Padova, pp 130–140

    Google Scholar 

  • Santaloia F, Cotecchia F, Vitone C (2012b) Le aree test dell’approccio multiscalare. In: Cascini L (ed) Criteri di zonazione della suscettibilità e della pericolosità da frane innescate da eventi estremi (piogge e sisma). Composervice srl, Padova, pp 88–95

    Google Scholar 

  • Santoso AM, Phoon KK, Quek ST (2011) Effects of soil spatial variability on rainfall-induced landslides. Comput Struct 89:893–900

    Article  Google Scholar 

  • Savage WZ, Godt JW, Baum RL (2004) Modeling time-dependent areal slope stability. In: Lacerda WA, Erlich M, Fontoura SAB, Sayao ASF (eds) Landslides—evaluation and stabilization, 9th international symposium on landslides. Balkema, Rotterdam, pp 23–36

    Google Scholar 

  • Sorbino G, Cotecchia F (2012) Gli effetti delle piogge sull’innesco e sull’ attivazione delle frane. In: Cascini L (ed) Criteri di zonazione della suscettibilità e della pericolosità da frane innescate da eventi estremi (piogge e sisma). Composervice srl, Padova, pp 249–255

    Google Scholar 

  • Terzaghi K (1950) Mechanisms of landslides. Geol Soc Am, Berkley, pp 83–123

    Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Govers G, Verstraeten G, Demoulin A (2007) Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256:588–603

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2005) Landslide hazard and risk zonation; why is it still so difficult? Bull Eng Geol Environ 65(2):167–184

    Article  Google Scholar 

  • Vessia G, Cherubini C, Pieczyńska J, Pula W (2009) Application of random finite element method to bearing capacity design of strip footing. J Geoeng 4(3):103–112

    Google Scholar 

  • Vitone C, Cotecchia F (2011) The influence of intense fissuring on the mechanical behaviour of clays. Geotéchnique 61(12):1003–1018

    Article  Google Scholar 

  • Vitone C, Cotecchia F, Viggiani G, Hall SA (2013a) Strain fields and mechanical response of a highly fissured bentonite clay. Int J Numer Anal Meth Geomech 37:1510–1534

    Article  Google Scholar 

  • Vitone C, Viggiani G, Cotecchia F, Hall SA (2013b) Localized deformation in intensely fissured clays studied by 2D digital image correlation. Acta Geotech 8:247–263

    Article  Google Scholar 

  • Walker BF, Blong RJ, McGregor JP (1987) Landslide classification, geomorphology and site investigation. In: Walker BF, Fell R (eds) Soil slope instability and stabilisation. Balkema, Rotterdam, pp 1–52

    Google Scholar 

  • Yin KJ, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rock. In: 5th International Symposium on Landslides, Lausanne, Switzerland, pp 1269–1272

Download references

Acknowledgements

The research was carried out with the support from: Apulia Region (PS_119), Apulian Aqueduct S.p.a. (2008–2011), Italian Ministry for Research and University (PRIN 2001–2003, 2007) and CNR-GNDCI (2002) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cafaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cafaro, F., Cotecchia, F., Santaloia, F. et al. Landslide hazard assessment and judgment of reliability: a geomechanical approach. Bull Eng Geol Environ 76, 397–412 (2017). https://doi.org/10.1007/s10064-016-0966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0966-3

Keywords

Navigation