Skip to main content
Log in

Geologically controlled bi-directional exchange of groundwater with a hypersaline lake in the Canadian prairies

Echange bidirectionnelC des eaux souterraines contrôlé par la géologie avec un lac hypersalin dans les prairies canadiennes

Intercambio bidireccional geológicamente controlado de las aguas subterráneas con un lago hipersalino en las praderas canadienses

加拿大北美大草原地下水与超盐度湖水之间受地质控制的双向交换

Troca bidirecional geologicamente controlada de águas subterrâneas com um lago hipersalino nas pradarias Canadenses

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Hypersaline lakes occur in hydrologically closed basins due to evaporitic enrichment of dissolved salts transported to the lakes by surface water and groundwater. At the hypersaline Lydden Lake in Saskatchewan, Canada, groundwater/lake-water interaction is strongly influenced by the geological heterogeneity of glacial deposits, whereby a highly permeable glaciofluvial sand/gravel deposit is underlain by glaciolacustrine deposits consisting of dense clay interspersed with silt/sand lenses. Pressure head distribution in a near shore area indicates a bi-directional flow system. It consists of topographically driven flow of fresh groundwater towards the lake in the sand/gravel aquifer and density-driven, landward flow of saline groundwater in the underlying glaciolacustrine deposits. Electrical resistivity tomography, and chemical and isotopic composition of groundwater clearly show the landward intrusion of saline water in the heterogeneous unit. The feasibility of bi-directional flow and transport is supported by numerical simulations of density-coupled groundwater flow and transport. The results suggest that the geologically controlled groundwater exchange processes have substantial influences on both inputs and outputs of dissolved minerals in hypersaline lakes in closed basins.

Résumé

Les lacs hypersalins se produisent dans des bassins hydrologiques fermés à cause de l’enrichissement par évaporation des sels dissous transportés dans les lacs par les eaux de surface et les eaux souterraines. Concernant le lac hypersalin de Lydden dans le Saskatchewan, Canada, l’interaction entre les eaux souterraines et les eaux de surface est fortement influencée par l’hétérogénéité géologique des dépôts glaciaires, caractérisée par un dépôt fluvioglaciaire hautement perméable de sables/graviers qui repose sur des dépôts glacio-lacustres constitués d’argiles denses entrecoupées par des limons et des lentilles sableuses. La distribution de la charge hydraulique dans une zone proche du rivage indique un système d’écoulement bi-directionnel. Il se compose de flux d’eaux souterraines douces influencés par la topographie vers le lac au sein de l’aquifère de sables/graviers et d’un contre flux d’eaux souterraines salées, influencé par la densité, au sein des dépôts glacio-lacustres sous-jacents. La tomographie de résistivité électrique et la composition chimique et isotopique de l’eau souterraine montrent clairement l’intrusion vers la terre de l’eau salée dans l’unité hétérogène. La vraisemblance d’un écoulement bi-directionnel et d’un transport est corroborée par des simulations numériques du flux d’eau souterraine, couplé à la densité et du transport. Les résultats suggèrent que les processus d’échange d’eaux souterraines contrôlés par la géologie ont des influences importantes aussi bien sur les apports que sur les exports des minéraux dissous dans les lacs hypersalins des bassins fermés.

Resumen

Los lagos hipersalinos se generan en cuencas hidrológicamente cerradas debido a un enriquecimiento evaporítico de sales disueltas transportadas hacia los lagos por el agua superficial y subterránea. En el lago hipersalino Lydden en Saskatchewan, Canadá, la interacción del agua subterránea/agua del lago está fuertemente influenciada por la heterogeneidad geológica de los depósitos glaciales, debido a que un depósito de arena/grava glaciofluvial altamente permeable subyace a depósitos glaciolacustres compuestos por una arcilla densa intercalada con lentes de limos/arenas. La distribución de la carga de presión en una zona cercana a la costa indica un sistema de flujo bidireccional. Consta de un flujo de agua dulce subterránea impulsado topográficamente hacia el lago en el acuífero de arena/grava y un flujo de agua subterránea salina hacia la tierra impulsado por la densidad, en los depósitos glaciolacustres subyacentes. La tomografía eléctrica de resistividad, la química y la composición isotópica de las aguas subterráneas muestran claramente la intrusión hacia tierra de agua salina en la unidad heterogénea. La viabilidad de flujo y transporte bi-direccional está soportada por simulaciones numéricas de flujo y por el acoplamiento del transporte de densidad del agua subterránea. Los resultados sugieren que los procesos de intercambio geológicamente controlados de aguas subterráneas tienen influencias importantes en la entrada y salida de minerales disueltos en lagos hipersalinos en cuencas cerradas.

摘要

由于输送到湖中的地表水和地下水中的溶解盐份的蒸发富集,超盐度的湖泊就会出现在水文上封闭的盆地中。在加拿大萨斯喀彻温省的Lydden超盐度湖,地下水/湖泊水相互作用受到冰川沉积地质上非均质性的强烈影响,而高度透水性的冰川水形成的砂/砾石沉积下伏着由含有粉砂/砂透镜体的致密粘土组成的冰湖沉积。近岸附近的压力水头分布表明,有双向的水流系统。包括砂/砾石含水层中地下淡水流地形上受驱动流向湖泊,以及下伏冰湖沉积中地下咸水流受密度驱使流向陆地。电阻系数断层摄影及地下水化学和同位素组分清楚地显示出异质单元中的咸水向陆地入侵。双向水流和传输的可行性得到了密度耦合的地下水流和传输的数值模拟支持。结果显示,受地质控制的地下水交换过程对封闭盆地超盐度湖泊中的溶解矿物的输入和输出有重要影响。

Resumo

Lagos hipersalinos ocorrem em bacias hidrologicamente fechadas devido ao enriquecimento evaporítico dos sais dissolvidos transportados até o lago por águas superficiais e águas subterrâneas. No hipersalino Lago Lydden, em Saskatchewan, Canadá, a interação lago/aquífero é fortemente influenciada pela heterogeneidade geológica dos depósitos glaciais, na qual um depósito glaciofluvial de areia/cascalho altamente permeável é sustentado por depósitos glaciolacustres constituídos de argilas densas intercaladas com lentes de silte/areia. Distribuições de carga hidráulica em uma área próxima à costa indicam um sistema de fluxo bidirecional. Isso consiste em um fluxo de águas subterrâneas doces topograficamente orientado sob o lago no aquífero areia/cascalho, e um fluxo de águas subterrâneas salinas em direção a terra, orientado por densidade, nos depósitos glaciolacustres subjacentes. Tomografia de resistividade elétrica e a composição química e isotópica das águas subterrâneas claramente mostram uma intrusão de água salina em direção a terra na unidade heterogênea. A exequibilidade do fluxo bidirecional e transporte é respaldada por simulações numéricas de fluxo e transporte das águas subterrâneas com densidade acoplada. Os resultados sugerem que o processo de troca geologicamente controlado de águas subterrâneas tem uma influência substancial em ambas entradas e saídas de minerais dissolvidos em lagos hipersalinos em bacias fechadas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bentley LR, Gharibi M (2004) Two and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics 69:674–680

    Article  Google Scholar 

  • Birks SJ, Remenda VH (1999) Hydrogeological investigation of Chappice Lake, southeastern Alberta: groundwater inputs to a saline basin. J Paleolimnol 21:235–255

    Article  Google Scholar 

  • Bowler JM (1986) Spatial variability and hydrologic evolution of Australian lake basins: analogue for Pleistocene hydrologic change and evaporate formation. Palaeogeogr Palaeoclimatol Palaeoecol 54:21–41

    Article  Google Scholar 

  • Canadian National Committee for the International Hydrological Decade (CNC/IHD) (1978) Hydrological atlas of Canada. Fisheries and Environment Canada, Ottawa

    Google Scholar 

  • Celia MA, Bouloutas ET, Zarba RL (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26:1483–1496

    Article  Google Scholar 

  • Christiansen EA (1968) Pleistocene stratigraphy of the Saskatoon area, Saskatchewan, Canada. Can J Earth Sci 5:1167–1173

    Article  Google Scholar 

  • Christiansen EA (1992) Pleistocene stratigraphy of the Saskatoon area, Saskatchewan, Canada: an update. Can J Earth Sci 29:1767–1778

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiogi E (ed) Stable isotopes in oceanographic studies and paleotemperatures: Spoleto 1965. Consiglio Nationale delle Ricerche, Pisa, Italy, pp 9–130

    Google Scholar 

  • Duffy CJ, Al-Hassan S (1988) Groundwater circulation in a closed desert basin: topographic scaling and climatic forcing. Water Resour Res 24:1675–1688

    Article  Google Scholar 

  • Environment Canada (2015) Canadian climate normals. http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed May 8, 2015

  • Furman A, Ferré TPA, Warrick AW (2003) A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling. Vadose Zone J 2:416–423

    Article  Google Scholar 

  • Gat JR (1981) Lakes. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. International Atomic Energy Agency technical report 210, IAEA, Vienna, pp 203–222

  • Gonfiantini R (1981) The δ-notation and the mass-spectrometric measurement techniques. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. International Atomic Energy Agency technical report 210, IAEA, Vienna, pp 35–84

  • Hammer UT (1978) The saline lakes of Saskatchewan: III, chemical characterization. Int Rev Gesamt Hydrobiol 63:311–335

    Article  Google Scholar 

  • Heagle DJ, Hayashi M, van der Kamp G (2013) Surface-subsurface salinity distribution and exchange in a closed-basin prairie wetland. J Hydrol 478:1–14

    Article  Google Scholar 

  • Hendry MJ, Wassenaar LI, Kotzer T (2000) Chloride and chlorine isotopes (36Cl and δ37Cl) as tracers of solute migration in a thick, clay-rich aquitard system. Water Resour Res 36:285–296

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in groundwater observations. Bull. no. 36, US Army Corps of Eng., Waterways Experiment Station, Vicksburg, MS

  • IAEA/WMO (2015) Global network of isotopes in precipitation: the GNIP database. http://www.iaea.org/water. Accessed September 4, 2015

  • Keller CK, van der Kamp G (1988) Hydrogeology of two Saskatchewan tills: II, occurrence of sulfate and implications for soil salinity. J Hydrol 101:123–144

    Article  Google Scholar 

  • Keller CK, van der Kamp G, Cherry JA (1991) Hydrogeochemistry of a clayey till: I, spatial variability. Water Resour Res 27:2543–2554

    Article  Google Scholar 

  • Kelley LI, Holmden C (2001) Reconnaissance hydrogeochemistry of economic deposits of sodium sulfate (mirabilite) in saline lakes, Saskatchewan, Canada. Hydrobiologia 466:279–289

    Article  Google Scholar 

  • Kiro Y, Weinstein Y, Starinsky A, Yechieli Y (2013) Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer. Geochim Cosmochim Acta 122:17–35

    Article  Google Scholar 

  • Langbein WB (1961) Salinity and hydrogeology of enclosed lakes. US Geol Surv Prof Pap 412, 20 pp

  • Last WM (1990) Lacustrine dolomite: an overview of Modern, Holocene, and Pleistocene occurrences. Earth-Sci Rev 27:221–263

    Article  Google Scholar 

  • Last WM, Schweyen TH (1983) Sedimentology and geochemistry of saline lakes of the Great Plains. Hydrobiologia 105:245–263

    Article  Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22:140–147

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Mekis É, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere–Ocean 49:163–177

    Google Scholar 

  • Morton FI (1983) Operational estimates of lake evaporation. J Hydrol 66:77–100

    Article  Google Scholar 

  • Nachshon U, Ireson A, van der Kamp G, Wheater H (2013) Sulfate salt dynamics in the glaciated plains of North America. J Hydrol 499:188–199

  • Oz I, Shalev E, Gvirtzman H, Yechieli Y, Gavrieli I (2011) Groundwater flow patterns adjacent to a long-term stratified (meromictic) lake. Water Resour Res 47, W08528. doi:10.1029/2010WR010146

    Article  Google Scholar 

  • Pacholko CT (2004) Mapping shoreline and determining groundwater seepage flux of a sodium sulphate lake, Lydden Lake, Saskatchewan. BSc Thesis, University of Calgary, Calgary, AB, Canada, 87 pp

  • Saskatchewan Research Council (SRC) (1987) Surficial geology of the North Battleford area (73 C), Saskatchewan. Saskatchewan Research Council, Saskatoon, SK

  • Tomkins RV (1954) Natural sodium sulphate in Saskatchewan. Department of Mineral Resources, Regina, SK, 71 pp

  • van der Kamp G, Hayashi M (1998) The groundwater recharge function of small wetlands in the semi-arid Northern Prairies. Great Plains Res 8:39–56

    Google Scholar 

  • van der Kamp G, Hayashi M (2009) Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol J 17:203–214

    Article  Google Scholar 

  • Van Stempvoort DR, Hendry MJ, Schoenau JJ, Krouse HR (1994) Sources and dynamics of sulphur in weathered till, western glaciated plains of North America. Chem Geol 111:35–56

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Sur Circ 1139

  • Wood WW, Jones BF (1990) Origin of solutes in saline lakes and springs on the southern High Plains of Texas and New Mexico. In: Gustavson TC (ed) Geologic framework and regional hydrology: Upper Cenozoic Blackwater Draw and Ogallala formations, Great Plains. Bur. of Econ. Geol, Austin, TX, pp 193–208

    Google Scholar 

  • Wood WW, Sanford WE (1990) Ground-water control of evaporate deposition. Econ Geol 85:1226–1235

    Article  Google Scholar 

  • Xu M, Eckstein Y (1995) Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 22:905–908

    Article  Google Scholar 

  • Yechieli Y (2000) Fresh–saline ground water interface in the western Dead Sea area. Ground Water 38:615–623

    Article  Google Scholar 

  • Yechieli Y, Kafri U, Goldman M, Voss CI (2001) Factors controlling the configuration of fresh–saline water interface in the Dead Sea coastal aquifers: synthesis of TDEM surveys and numerical groundwater modeling. Hydrogeol J 9:367–377

    Article  Google Scholar 

  • Yechieli Y, Wood WW (2002) Hydrologic processes in saline systems: playas, sabkhas, and saline lakes. Earth-Sci Rev 58:343–365

    Article  Google Scholar 

  • Zimmerman EP (2002) Characterization of hydrogeological settings around a hypersaline sodium sulphate lake with application of electrical resistivity tomography. MSc Thesis, University of Calgary, Calgary, AB, Canada

  • Zonge K, Wynn J, Urquart S (2005) Resistivity, induced polarization and complex resistivity. In: Butler DK (ed) Near surface geophysics. Society of Exploration Geophysics, Tulsa, OK

    Google Scholar 

Download references

Acknowledgements

We thank Harm Maathuis for assistance with the drilling program; Carlin Pacholko for seepage meter installation and measurement, discharge zone delineation, and plant identification; Kevin Radke for seepage meter and drive-point piezometer installation; Marie Mathe for lake water sampling and analysis; Lindsay Meads, Kate Hydeman, and David Gallén for field work assistance; Kristin Eccles and Samantha Morgan for GIS work; and Alexandra Mozil for ERT plots. Constructive comments by the editor and three anonymous reviewers improved the quality of the paper. The study was funded by the Natural Sciences and Engineering Research Council of Canada, the Strategic Initiatives Fund of the Saskatchewan Energy and Mines, and the Science Horizons Program of Environment Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Hayashi.

Appendix

Appendix

Table 4 Summary of seepage meter measurements during June and July 2003 (see Figs. 1 and 2 for locations). Discharge values are the average over each period. Isotopic composition and total dissolved solid (TDS) concentration were determined for water samples collected from the seepage meters. N/A indicates no available data
Table 5 Isotopic and chemical composition of water samples from Lydden Lake, Spring Water (Spring W) Lake, and piezometers (see Fig. 4 for location and screen elevation). Concentrations of major ions and total dissolved solids (TDS) are in mg L−1, and alkalinity is in meq L−1. Lydden Lake samples on 11 May 2001 were collected from three different locations within the lake to examine the spatial variability. N/A indicates the data not available

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentley, L.R., Hayashi, M., Zimmerman, E.P. et al. Geologically controlled bi-directional exchange of groundwater with a hypersaline lake in the Canadian prairies. Hydrogeol J 24, 877–892 (2016). https://doi.org/10.1007/s10040-016-1368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1368-0

Keywords

Navigation