Skip to main content
Log in

Sedimentology and geochemistry of saline lakes of the Great Plains

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Southern Saskatchewan and portions of adjacent Alberta, North Dakota and Montana are occupied by hundreds of saline and hypersaline lakes ranging in size from small prairie potholes (less than 1 km2) to relatively large bodies of water (greater than 300 km2). From a sedimentological perspective, distinction must be made between two basic types of saline lakes: playas and perennial lakes.

Calcium, sodium and magnesium sulfates, carbonates and bicarbonates form as chemical precipitates in lakes with more concentrated brines. In addition, experimental data suggests mixed layer smectites may form authigenically in some lakes. Clastic sediments in the salt lakes consist mainly of silt and clay-sized quartz, feldspars, carbonates and clay minerals.

The dominant physical and chemical processes which are responsible for and act upon the sediment vary widely, mainly in response to basin morphology and brine chemistry. Evaporative concentration and significant groundwater contributions affect all the saline lakes. However, other processes are different in the two basic types of basins. The playa lakes are influenced by: evaporitic pumping and the formation of efflorescent crusts and intrasedimentary crystals, cyclic wetting and drying, precipitation of highly soluble salt layers, and influx of clastic debris by sheetflood and wind. In contrast, in the permanent lakes, precipitation of sparingly soluble salts occurs due to the interaction of biological activity, seasonal temperature fluctuations and brine mixing. In addition, many of the permanent lakes undergo freeze-out precipitation of very soluble salts under a winter ice cover. Detrital sediments are distributed within the basins by normal lacustrine processes, including shoreline deposition and erosion, turbidity flow and pelagic fallout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Droubi, A. B., Fritz, B., Gac, J. Y. & Tardy, Y., 1980. Generalized residual alkalinity concept; application to prediction of natural waters by evaporation. Am. J. Sci. 280: 560–572.

    Google Scholar 

  • Bell, H. S., 1942. Density currents as agents for transporting sediments. J. Geol. 50: 512–547.

    Google Scholar 

  • Callender, E., 1968. The postglacial sedimentology of Devils Lake, North Dakota. Ph.D. Thesis, Univ. N. Dakota, 312 pp.

  • Christiansen, E. A., 1967a. Collapse structures near Saskatoon, Saskatchewan, Canada. Can. J. Earth Sci. 4: 757–767.

    Google Scholar 

  • Christiansen, E. A., 1967b. Preglacial valleys in southern Saskatchewan. Sask. Res. Coun., Map 3, pp.

  • Christiansen, E. A., 1971. Geology of the Crater Lake collapse structure in southeastern Saskatchewan. Can. J. Earth Sci. 8: 1505–1513.

    Google Scholar 

  • Christiansen, E. A. & Whitaker, S. H., 1971. Glacial thrusting of drift and bedrock. In: Legget, R. F. (ed.), Glacial Till. R. Soc. Can., spec. publ. 12, Ottawa: 121–130.

    Google Scholar 

  • CNC/IHD (Canadian National Committee for the International Hydrologic Decade), 1978. Hydrologic Atlas of Canada, Fisheries and Environment Canada, Ottawa, 34 pp.

    Google Scholar 

  • Cole, L. H., 1926. Sodium sulfate of western Canada. Occurrence, uses and technology. Can. Dep. Mines Publ. 646, 155 pp.

    Google Scholar 

  • Dean, W. E., 1981. Carbonate minerals and organic matter in sediments of modern north temperate hard-water lakes. In: Ethridge, F. G. & Flores, R. M. (eds.), Recent and Ancient Nonmarine Depositional Environments: Models for Exploration. Soc. Econ. Paleon. Min., Spec. Publ. 31: 213–232.

  • Dean, W. E. & Gorham, E., 1976. Major chemical and mineral components of profundal surface sediments in Minnesota lakes. Limnol. Oceanogr. 21: 259–284.

    Google Scholar 

  • Eugster, H. P. & Hardie, L. A., 1978. Saline lakes. In: Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, N.Y.: 237–293.

    Google Scholar 

  • Forel, F. A., 1885. Les ravins sous-lacustre des fleuves glaciaires. C.r. Acad. Sci. Paris 101: 725–728.

    Google Scholar 

  • Gilbert, G. K., 1885. The topographic features of lake shores. U.S. Geol. Surv. Annu. Rep. 5: 75–123.

    Google Scholar 

  • Golterman, H. L., 1977. Interaction Between Sediments and Freshwater. Junk, The Hague, Neth., 473 pp.

    Google Scholar 

  • Grossman, I. G., 1949. The sodium sulfate deposits of western North Dakota: a progress report. N. Dakota Geol. Surv. Rep. Invest. 1, 65 pp.

  • Grossman, I. G., 1968. Origin of sodium sulfate deposits of the northern Great Plains of Canada and the United States. U.S. Geol. Surv. prof. Pap. 600-B: B104-B109.

    Google Scholar 

  • Hakanson, L., 1977. The influence of wind fetch and water depth on the distribution of sediments in Lake Vanern, Sweden. Can. J. Earth Sci. 14: 397–412.

    Google Scholar 

  • Hammer, U. T., 1978a. The saline lakes of Saskatchewan. 1. Background and rationale for saline lakes research. Int. Revue ges. Hydrobiol. 63: 173–177.

    Google Scholar 

  • Hammer, U. T., 1978b. The saline lakes of Saskatchewan. 3. Chemical Characterization. Int. Revue ges. Hydrobiol. 63: 311–335.

    Google Scholar 

  • Hammer, U. T. & Haynes, R. C., 1978. The saline lakes of Saskatchewan. 2. Locale, hydrography and other physical aspects. Int. Revue ges. Hydrobiol. 63: 179–203.

    Google Scholar 

  • Hammer, U. T., Haynes, R. C., Lawrence, J. R. & Swift, M. C., 1978. Meromixis in Waldsea lake, Saskatchewan. Verh. int. Ver. Limnol. 20: 192–200.

    Google Scholar 

  • Hardie, I. A., Smoot, J. P. & Eugster, H. P., 1978. Saline lakes and their deposits: a sedimentological approach. In: Matter, A. & Tucker, M. E. (eds.), Modern and Ancient Lake Sediments. Blackwell Scientific Publications, Oxford: 7–41.

    Google Scholar 

  • Handford, C. R., 1982. Sedimentology and evaporite genesis in a Holocene continental sabkha playa basin — Bristol Dry Lake, California. Sedimentology 29: 239–254.

    Google Scholar 

  • Haynes, R. C. & Hammer, U. T., 1978. The saline lakes of Saskatchewan. 4. Primary production of phytoplankton in selected saline ecosystems. Int. Revue ges. Hydrobiol. 63: 337–351.

    Google Scholar 

  • Jones, B. F. & van Denburgh, A. S., 1966. Geochemical influences on the chemical character of closed lakes. In: Symposium of Garda, Hydrology of Lakes and Reservoirs, Proc. int. Ass. Sci. Hydrol. Publ. 70: 438–446.

  • Kelts, K. & Hsü, K. J., 1978. Freshwater carbonate sedimentation. In: Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics, Springer-Verlag, N.Y.: 295–323.

    Google Scholar 

  • Langham, E. J., 1970. Interim report and program review of the Big Quill Lake study. Rep. E 70–12, Sask. Res. Coun., Saskatoon, 39 pp.

    Google Scholar 

  • Lawrence, J. R., 1978. Factors influencing the contribution of Chlorobacteriaceae to primary production in a saline meromictic lake. M.Sc. Thesis, Univ. Saskatchewan, 103 pp.

  • Lawrence, J. R., Haynes, R. C. & Hammer, U. T., 1978. Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Lee, G. F., 1970. Factors affecting the exchange of material between water and sediments. Univ. Wis. Wat. Res. Center, Lit. Rev. 1: 1–50.

    Google Scholar 

  • Lieffers, V. J., 1981. Environment and ecology of Scirpus maritimus L. var. paludosus (Nels.) Kük. in saline wetlands of the Canadian prairies. Ph.D. Thesis, Univ. Manitoba, 167 pp.

  • Meneley, W. A., Christiansen, E. A. & Kupsch, W. O., 1957. Preglacial Missouri River in Saskatchewan. J. Geol. 65: 441–447.

    Google Scholar 

  • McKay, G. A. & Stichling, W., 1961. Evaporation computations for Prairie reservoirs. Proc. Hydrol. Symp. 2, Evaporation. Queen's Printer, Ottawa, 180 pp.

    Google Scholar 

  • Müller, G., Irion, G. & Forstner, U., 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.

    Google Scholar 

  • Müller, G. & Wagner, F., 1978. Holocene carbonate evolution in Lake Balaton (Hungary): a response to climate and impact of man. In: Matter, A. & Tucker, M. E. (eds.), Modern and Ancient Lake Sediments: Blackwell Scientific Publications, Oxford: 57–81.

    Google Scholar 

  • Murphy, D. M. & Wilkinson, B. H., 1980. Carbonate deposition and facies distribution in a central Michigan marl lake. Sedimentology 27: 123–136.

    Google Scholar 

  • Prest, V., 1970. Quaternary geology of Canada. In: Douglas, R. J. W. (ed.), Economic Geology and Minerals of Canada, Geol. Surv. Can. Econ. Geol. Rep. 1: 676–764.

  • Rawson, D. S. & Moore, G. E., 1944. The saline lakes of Saskatchewan. Can. J. Res. D 22: 141–201.

    Google Scholar 

  • Reeves, C. C. Jr., 1968. Introduction to Paleolimnology. Elsevier, Amsterdam, 228 pp.

    Google Scholar 

  • Reeves, C. C. Jr., 1978. Economic significance of playa lake deposits. In: Matter, A. & Tucker, M. E. (eds.), Modern and Ancient Lake Sediments: Blackwell Scientific Publications, Oxford: 279–290.

    Google Scholar 

  • Rueffel, P. G., 1968. Development of the largest sodium sulphate deposit in Canada. C.I.M. Bull. 61 (678): 1217–1228.

    Google Scholar 

  • Sly, P. G., 1978. Sedimentary processes in lakes. In: Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, N.Y.: 65–89.

    Google Scholar 

  • Sly, P. G., 1973. Sediment processes in Great lakes. In: Proc. Hydrol. Symp. Fluvial Processes and Sedimentation, Univ. Alberta, Nat. Res. Coun. Can., Ottawa: 465–492.

    Google Scholar 

  • Stalker, A., 1961. Buried valleys in central and southern Alberta. Geol. Surv. Can. Pap. 60–32, 13 pp.

  • Sturm, M. & Matter, A., 1978. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. In: Matter, A. & Tucker, M. E. (eds.), Modern and Ancient Lake Sediments. Blackwell Scientific Publications, Oxford: 147–168.

    Google Scholar 

  • Teller, J. T., Bowler, J. M. & Macumber, P. G., 1982. Modern sedimentation and hydrology in Lake Tyrrel, Victoria. J. Geol. Soc. Aust. 29: 159–175.

    Google Scholar 

  • Tomkins, R. V., 1953. Magnesium in Saskatchewan. Sask. Dep. Min. Resour., Rep. 11, 23 pp.

  • Tomkins, R. V., 1954. Natural sodium sulfate in Saskatchewan (2nd ed.). Sask. Dep. Min. Resour., Rep. 6, 71 pp.

  • Tones, P. I. & Hammer, U. T., 1975. Osmoregulation in Trichocorixa verticalis interiores Sailer (Hemiptera, Corxidae) an inhabitant of Saskatchewan saline lakes, Canada. Can. J. Zool. 53: 1207–1212.

    Google Scholar 

  • Weisman, W. I. & Tandy, C. W., 1975. Sodium sulfate deposits. In: Lefond, S. J. (ed.), Industrial Minerals and Rocks, 4th ed. AIME. N.Y.: 1081–1093.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. W. B. Saunders Company, Philad., Pa., 743 pp.

    Google Scholar 

  • Whiting, J. M., 1974. Closed drainage lakes are a climatic change indicator. Sask. Res. Coun. Rep. E74–10, 31 pp.

  • Wigley, T. M. L., 1977. WATSPEC: a computer program for determining the equilibrium speciation of aqueous solutions. Br. Geomorph. Res. Group tech. Bull. 20, 48 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Last, W.M., Schweyen, T.H. Sedimentology and geochemistry of saline lakes of the Great Plains. Hydrobiologia 105, 245–263 (1983). https://doi.org/10.1007/BF00025192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025192

Keywords

Navigation