Skip to main content
Log in

Sparse Adaptive Approximation of High Dimensional Parametric Initial Value Problems

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider non-linear systems of ordinary differential equations (ODEs) on a state space \(\mathcal{S}\). We consider the general setting when \(\mathcal{S}\) is a Banach space over ℝ or ℂ. We assume the right-hand side depends in an affine fashion on a sequence y=(y j ) j≥1 of possibly countably many parameters, normalized such that |y j |≤1. Under suitable analyticity assumptions on the ODEs, we prove that the parametric solution \(\{X(t;y): 0\leq t\leq T\}\subset\mathcal{S}\) of the corresponding IVP depends holomorphically on the parameter vector y, as a mapping from the infinite-dimensional parameter domain U=[−1,1] into a suitable function space on \([0,T]\times \mathcal{S}\). While such affine parameter dependence of the ODE seems quite special it is of great importance for applications as it arises, among others, in mass–action models in computational biology (see, e.g., Horn and Jackson in Arch. Ration. Mech. Anal. 47:81–116, 1972) and in stoichiometry with uncertain reaction rate constants. Using our analytic regularity result, we prove summability theorems for coefficient sequences of generalized polynomial chaos (gpc) expansions of the parametric solutions {X(⋅;y)} yU with respect to tensor product orthogonal polynomial bases of L 2(U). We give sufficient conditions on the ODEs for N-term truncations of these expansions to converge on the entire parameter space with efficiency (i.e., accuracy versus complexity) being independent of the number of parameters viz. the dimension of the parameter space U. Computational aspects of such approximations will be addressed in Hansen et al. (Proceedings of the 5th International Conference on High Performance Scientific Computing, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000). doi:10.1023/A:1018977404843

    Article  MathSciNet  MATH  Google Scholar 

  2. Bieri, M.: A sparse composite collocation finite element method for elliptic SPDEs. SIAM J. Numer. Anal. 49, 2277–2301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bieri, M., Andreev, R., Schwab, Ch.: Sparse tensor discretization of elliptic sPDEs. SIAM J. Sci. Comput. 31(6), 4281–4304 (2009/10)

    Article  MathSciNet  Google Scholar 

  4. Calvi, J.-P., Van, M.P.: On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation. J. Approx. Theory 163(5), 608–622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Evolution to complex geometries and applications to fluid dynamics. In: Spectral Methods. Scientific Computation. Springer, Berlin (2007)

    Google Scholar 

  6. Chkifa, A., Cohen, A., DeVore, R., Schwab, Ch.: Adaptive algorithms for sparse polynomial approximation of parametric and stochastic elliptic PDEs. Technical report, Report 2011-44, Seminar for Applied Mathematics, ETH Zürich (to appear in M2AN 2013)

  7. Cohen, A., DeVore, R., Schwab, Ch.: Convergence rates of best n-term approximations for a class of elliptic sPDEs. Found. Comput. Math. 10(6), 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, A., DeVore, R.A., Schwab, Ch.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. 9(1), 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deimling, K.: Nonlinear Ordinary Differential Equations in Banach Spaces. Springer Lecture Notes in Mathematics, vol. 596. Springer, New York (1977)

    Google Scholar 

  10. Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. Springer, Berlin (1993)

    Google Scholar 

  11. Gittelson, C.J.: Adaptive stochastic Galerkin methods: Beyond the elliptic case. Technical report, Report 2011-12, Seminar for Applied Mathematics, ETH Zürich

  12. Hairer, E., Wanner, G.: Stiff and differential-algebraic problems. In: Solving Ordinary Differential Equations. II, 2nd edn. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996)

    Chapter  Google Scholar 

  13. Hairer, E., Nørsett, S.P., Wanner, G.: Nonstiff problems. In: Solving Ordinary Differential Equations. I. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1987)

    Google Scholar 

  14. Hairer, E., Lubich, Ch., Wanner, G.: Structure-preserving algorithms for ordinary differential equations. In: Geometric Numerical Integration, 2nd edn. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006)

    Google Scholar 

  15. Hansen, M., Schwab, Ch.: Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs. Technical report 2011/29, Seminar for Applied Mathematics, ETH Zürich, (2011)

  16. Hansen, M., Schillings, C., Schwab, Ch.: Sparse, adaptive approximation of high dimensional, parametric initial value ODEs. In: Proceedings of the 5th International Conference on High Performance Scientific Computing, Springer, Berlin (2013, to appear)

  17. Hervé, M.: Analyticity in Infinite Dimensional Spaces. de Gruyter Studies in Mathematics, vol. 10. de Gruyter, Berlin (1989)

    Book  MATH  Google Scholar 

  18. Hoang, V.-H., Schwab, Ch.: Analytic regularity and polynomial approximation of stochastic, parametric elliptic multiscale PDEs. Technical Report 2011/07, Seminar for Applied Mathematics, ETH Zürich (2013). To appear in Analysis and Applications (Singapore) (2013)

  19. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn. North-Holland Mathematical Library, vol. 7. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  20. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)

    Article  MathSciNet  Google Scholar 

  21. Kunoth, A., Schwab, Ch.: Analytic regularity and GPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs. Technical Report 2011/54, Seminar for Applied Mathematics, ETH Zürich

  22. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rivlin, T.: The Chebyshev Polynomials. Ser. Pure & Applied Mathematics. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  24. Walter, W.: Ordinary Differential Equations. Springer, New York (1998). Translated from the sixth German (1996) edition by Russell Thompson, Readings in Mathematics

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Research supported in part by the European Research Council (ERC) under the FP7 program AdG247277 and by the Eidgenössische Technische Hochschule (ETH) Zürich under the ETH-Fellowship Grant FEL-33 11-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schwab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, M., Schwab, C. Sparse Adaptive Approximation of High Dimensional Parametric Initial Value Problems. Viet J Math 41, 181–215 (2013). https://doi.org/10.1007/s10013-013-0011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-013-0011-9

Keywords

Mathematics Subject Classification (2010)

Navigation