Skip to main content

Sparse Approximation Algorithms for High Dimensional Parametric Initial Value Problems

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes - HPSC 2012

Abstract

We consider the efficient numerical approximation for parametric nonlinear systems of initial value Ordinary Differential Equations (ODEs) on Banach state spaces \(\mathcal{S}\) over \(\mathbb{R}\) or \(\mathbb{C}\). We assume the right hand side depends analytically on a vector \(y = (y_{j})_{j\geq 1}\) of possibly countably many parameters, normalized such that | y j  | ≤ 1. Such affine parameter dependence of the ODE arises, among others, in mass action models in computational biology and in stoichiometry with uncertain reaction rate constants. We review results by the authors on N-term approximation rates for the parametric solutions, i.e. summability theorems for coefficient sequences of generalized polynomial chaos (gpc) expansions of the parametric solutions {X(⋅ ; y)} y ∈ U with respect to tensorized polynomial bases of L 2(U). We give sufficient conditions on the ODEs for N-term truncations of these expansions to converge on the entire parameter space with efficiency (i.e. accuracy versus complexity) being independent of the number of parameters viz. the dimension of the parameter space U. We investigate a heuristic adaptive approach for computing sparse, approximate representations of the \(\{X(t;y): 0 \leq t \leq T\} \subset \mathcal{S}\). We increase efficiency by relating the accuracy of the adaptive initial value ODE solver to the estimated detail operator in the Smolyak formula. We also report tests which indicate that the proposed algorithms and the analyticity results hold for more general, nonaffine analytic dependence on parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. (M3AS) 22(9), 1250023.1–1250023.33 (2012)

    Google Scholar 

  2. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000). 10.1023/A:1018977404843

    Article  MathSciNet  MATH  Google Scholar 

  3. Bieri, M.: A sparse composite collocation finite element method for elliptic SPDEs. SIAM J. Numer. Anal. 49, 2277–2301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31, 4281–4304 (2009/2010)

    Google Scholar 

  5. Caliari, M., Vianello, M., Bergamaschi, L.: Interpolating discrete advection-diffusion propagators at Leja sequences. J. Comput. Appl. Math. 172, 79–99 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvi, J.-P., Phung Van, M.: On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation. J. Approx. Theory 163, 608–622 (2011)

    Google Scholar 

  7. Calvi, J.-P., Phung Van, M.: Lagrange Interpolation at Real Projections of Leja Sequences for the Unit Disk. Proceedings of the American Mathematical Society (2012). http://dx.doi.org/10.1090/S0002-9939-2012-11291-2

  8. Chkifa, A., Cohen, A., DeVore, R., Schwab, Ch.: Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: Math. Model. Numer. Anal. 47(1), 253–280 (2013). doi:http://dx.doi.org/10.1051/m2an/2012027

  9. Chkifa, A., Cohen, A., Schwab, Ch.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14(4), 601–633 (2014). ISSN:1615-3375

    Google Scholar 

  10. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best n-term approximations for a class of elliptic SPDEs. J. Found. Comput. Math. 10, 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, A., DeVore, R.A., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. 9, 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deimling, K.: Nonlinear Ordinary Differential Equations in Banach Spaces. Volume 596 of Springer Lecture Notes in Mathematics. Springer, New York (1977)

    Google Scholar 

  13. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71, 65–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gittelson, C.J.: Convergence rates of multilevel and sparse tensor approximations for a random elliptic PDE. SIAM J. Numer. Anal. 51(4), 2426–2447 (2013). doi:10.1137/110826539

    Article  MathSciNet  MATH  Google Scholar 

  15. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Volume 8 of Springer Series in Computational Mathematics. Springer, Berlin (1987)

    Google Scholar 

  16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Volume 14 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (1996)

    Google Scholar 

  17. Hansen, M., Schwab, C.: Sparse adaptive approximation of high dimensional parametric initial value problems. Vietnam J. Math. 1–35 (2013). http://dx.doi.org/10.1007/s10013-013-0011-9

  18. Hoang, V.H., Schwab, C.: Analytic regularity and polynomial approximation of stochastic, parametric elliptic multiscale PDEs. Anal. Appl. (Singapore) 11(01), 1350001-1–1350001-50 (2013). doi:http://dx.doi.org/10.1142/S0219530513500012

  19. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Walter, W.: Ordinary Differential Equations. Volume 182 of Graduate Texts in Mathematics. Springer, New York (1998). Translated from the sixth German (1996) edition by Russell Thompson, Readings in Mathematics

    Google Scholar 

Download references

Acknowledgements

Research supported in part by the European Research Council (ERC) under the FP7 program AdG247277 and by the Eidgenössische Technische Hochschule (ETH) Zürich under the ETH-Fellowship Grant FEL-33 11-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schwab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hansen, M., Schillings, C., Schwab, C. (2014). Sparse Approximation Algorithms for High Dimensional Parametric Initial Value Problems. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes - HPSC 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-09063-4_6

Download citation

Publish with us

Policies and ethics