Skip to main content
Log in

Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2x (PO4)2F3-2x

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effects of 10 wt.% super P carbon, multiwalled carbon nanotubes (MWCNTs), and reduced graphene oxide (rGO) on particles size and electrochemical properties of Na3V2O2x (PO4)2F3-2x cathode material were studied. Among these three carbon polymorphs, using MWCNT in composite is effective to obtain low particle size and enhanced electrochemical properties of Na3V2O2x (PO4)2F3-2x . While using rGO to make the composite, the particle size becomes quite big, leading a smaller surface contact area with the electrolytes and thereby resulting in poor cyclability. Na3V2O2x (PO4)2F3-2x -MWCNT composite shows a high capacity of 98 mAh g−1at 0.1 C rate for 100 cycles, and further, it exhibits a stable capacity of 89 mAh g−1 at 0.2 C rate vs. NaTi2(PO4)3-MWCNT in full cell configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Palomares V, Serras P, Villaluenga I, Hueso K, Carretero-Gonzalez J, Rojo T (2012) Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  2. Kundu D, Talaie E, Duffort V, Nazar L (2015) Angew Chem Int Ed 54:3431–3448

    Article  CAS  Google Scholar 

  3. Wang L, Yu L, Wang X, Srinivasan M, Xu Z (2015) J Mater Chem A 3:9353–9378

    Article  CAS  Google Scholar 

  4. Ellis B, Nazar L (2012) Curr Opin Solid State Mater Sci 16:168–177

    Article  CAS  Google Scholar 

  5. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  6. Xiang X, Zhang K, Chen J (2015) Adv Mater 27:5343–5364

    Article  CAS  Google Scholar 

  7. Jung Y, Lim C, Kim D (2013) J Mater Chem A 1:11350–11354

    Article  CAS  Google Scholar 

  8. Tripathi R, Wood S, Islam M, Nazar L (2013) Energy Environ Sci 6:2257–2264

    Article  CAS  Google Scholar 

  9. Zhao J, He J, Ding X, Zhou J, Ma Y, Wu S, Huang R (2010) J Power Sources 195:6854–6859

    Article  CAS  Google Scholar 

  10. Liu Y, Zhou Y, Zhang S, Zhang J, Ren P, Qian C (2015) J Solid State Electrochem. doi:10.1007/s10008-015-3063-9

    Google Scholar 

  11. Lu Y, Zhang S, Li Y, Xue L, Xu G, Zhang X (2014) J Power Sources 247:770–777

    Article  CAS  Google Scholar 

  12. Xu M, Cheng C, Sun Q, Bao S, Niu Y, He H, Li Y, Song J (2015) RSC Adv 5:40065–40069

    Article  CAS  Google Scholar 

  13. Xu M, Wang L, Zhao X, Song J, Xie H, Lu Y, Goodenough J (2013) Phys Chem Chem Phys 15:13032–13037

    Article  CAS  Google Scholar 

  14. Jin H, Dong J, Uchaker E, Zhang Q, Zhou X, Hou S, J L, Cao G (2015) J Mater Chem A 3:17563–17568

    Article  CAS  Google Scholar 

  15. Sharma N, Serras P, Palomares V, Brand H, Alonso J, Kubiak P, Fdez-Gubieda M, Rojo T (2014) Chem Mater 26:3391–3402

    Article  CAS  Google Scholar 

  16. Song W, Ji X, Wu Z, Zhu Y, Li F, Yao Y, Banks C (2014) RSC Adv 4:11375–11383

    Article  CAS  Google Scholar 

  17. Bianchini M, Fauth F, Brisset N, Weill F, Suard E, Masquelier C, Croguennec L (2015) Chem Mater 27:3009–3020

    Article  Google Scholar 

  18. Kumar PR, Jung YH, Wang JE, Kim DK (2016) J Power Sources 324:421–427

    Article  CAS  Google Scholar 

  19. Serras P, Palomares V, Goni A, Kubiak P, Rojo T (2013) J Power Sources 241:56–60

    Article  CAS  Google Scholar 

  20. Serras P, Palomares V, Alonso J, Sharma N, Lopez del Amo J, Kubiak P, Rojo T (2013) Chem Mater 25:4917–4925

    Article  CAS  Google Scholar 

  21. Park Y, Seo D, Kim B, Hong K, Kim H, Lee S, Shakoor R, Miyasaka K, Tarascon J, Kang K (2012) Sci Rep 2:704

    Google Scholar 

  22. David L, Bhandavat R, Singh G (2014) ACS Nano 8:1759–1770

    Article  CAS  Google Scholar 

  23. Liu Y, Xu Y, Han X, Pellegrinelli C, Zhu Y, Zhu H, Wan J, Chung A, Vaaland O, Wang C, Hu L (2012) Nano Lett 12:5664–5668

    Article  CAS  Google Scholar 

  24. Li S, Dong Y, Xu L, Xu X, He L, Mai L (2014) Adv Mater 26:3545–3553

    Article  CAS  Google Scholar 

  25. He G, Li L, Manthiram A (2015) J Mater Chem A 3:14750–14758

    Article  CAS  Google Scholar 

  26. Jabbour L, Destro M, Chaussy D, Gerbaldi C, Bodoardo S, Penazzi N, Beneventi D (2013) Compos Sci Technol 87:232–239

    Article  CAS  Google Scholar 

  27. Yan J, Liu X, Li B (2015) Electrochem Commun 56:46–50

    Article  CAS  Google Scholar 

  28. Hummers W, Offeman R (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  29. Kumar PR, Jung YH, Lim CH, Kim DK (2015) J Mater Chem A 3:6271–6275

    Article  CAS  Google Scholar 

  30. Kumar PR, Jung YH, Murthy B, Kim DK (2016) J Electrochem Soc 163:A1484–A1492

    Article  CAS  Google Scholar 

  31. Sauvage F, Quarez E, Tarascon J, Baudrin E (2006) Solid State Sci 8:1215–1221

    Article  CAS  Google Scholar 

  32. Vidano R, Fischbach D (1978) J Am Ceram Soc 61:13–17

    Article  CAS  Google Scholar 

  33. Nii H, Sumiyama Y, Nakagawa H, Kunishige A (2008) Appl Phys Express 1:064005

    Article  Google Scholar 

  34. Storm M, Overgaard M, Younesi R, Reeler N, Vosch T, Nielsen U, Edstrom K, Norby P (2015) Carbon 85:233–244

    Article  CAS  Google Scholar 

  35. Du W, Gupta A, Zhang X, Sastry A, Shyy W (2010) Int J Heat Mass Transf 53:3552–3561

    Article  CAS  Google Scholar 

  36. Sharma Y, Sharma N, Subbarao G, Chowdari B (2008) Solid State Ionics 179:587–597

    Article  CAS  Google Scholar 

  37. Sarkar A, Sarkar S, Sarkar T, Kumar P, Bharadwaj M, Mitra S (2015) ACS Appl Mater Interfaces 7:17044–17053

    Article  CAS  Google Scholar 

  38. Li X, Zhu X, Liang J, Hou Z, Wang Y, Lin N, Zhu Y, Qian Y (2014) J Electrochem Soc 161:A1181–A1187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program to Solve Climate Changes (NRF-2010-C1AAA001-2010-0029031) of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning. It was also supported by the Climate Change Research Hub of KAIST (Grant No. N01150034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Kyung Kim.

Electronic supplementary material

ESM 1

(DOC 976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.R., Jung, Y.H. & Kim, D.K. Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2x (PO4)2F3-2x . J Solid State Electrochem 21, 223–232 (2017). https://doi.org/10.1007/s10008-016-3365-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3365-6

Keywords

Navigation