Skip to main content
Log in

Modulated electrical field as a new pulse method to make TiO2 film for high- performance photo-electrochemical cells and modeling of the deposition process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Deposition of charged particles under an electrical field which is expressed as the electrophoretic deposition (EPD) is a fast and simple method of nanoparticle coating. In this research, a comprehensive study was performed to improve the TiO2 film properties by application of modulated electrical fields with different amplitudes, waveforms, and frequencies. The suspension parameters (solvent composition, electrical conductivity, and additive concentration) were also optimized. Final photo-electrodes were characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM), physicochemical, polarization, and photo-electrochemical studies. Based on the results, less particle consumption with better substrate coverage was obtained by applying modulated electrical fields. In the I-V test, the photo-electrodes constructed by applying AC signals with the square waveform at 100 Hz and sinusoidal waveform at 1 kHz showed photo-current density enhancement of about 21 and 18 times (in 1 V vs. Ag/AgCl), respectively, and about 40 % less deposited particle mass in comparison to the photo-electrode prepared in conventional DC electrical field. AC electrical fields could also be used with suspensions containing water as the green solvent. All observations in the EPD processing were successfully interpreted with an electrochemical circuit model that was developed based on the electrochemical impedance spectroscopy (EIS) results and analysis of deposition current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsakalakos L (2010) Nanotechnology for photovoltaics. In: Nanotechnol. Photovoltaics. CRC Press, pp 1–48

  2. Nomura K, Ohta H, Takagi A, et al. (2004) Nature 432:488–492

    Article  CAS  Google Scholar 

  3. Minami T (2005) Semicond Sci Technol 20:S35–S44

    Article  CAS  Google Scholar 

  4. Nomura K, Takagi A, Kamiya T, et al. (2006) Jpn J Appl Phys 45:4303–4308

    Article  CAS  Google Scholar 

  5. Youngblood WJ, Lee S-HA, Maeda K, Mallouk TE (2009) Acc Chem Res 42:1966–1973

    Article  CAS  Google Scholar 

  6. Chan SHS, Yeong Wu T, Juan JC, Teh CY (2011) J Chem Technol Biotechnol 86:1130–1158

    Article  CAS  Google Scholar 

  7. Kavan L (2012) Chem Rec 12:131–142

    Article  CAS  Google Scholar 

  8. Grätzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  9. Regonini D, Teloeken AC, Alves AK, et al. (2013) ACS Appl Mater Interfaces 5:11747–11755

    Article  CAS  Google Scholar 

  10. Quan X, Yang S, Ruan X, Zhao H (2005) Environ Sci Technol 39:3770–3775

    Article  CAS  Google Scholar 

  11. Qin D-D, Bi Y-P, Feng X-J, et al. (2015) Chem Mater 27:4180–4183

    Article  CAS  Google Scholar 

  12. Hwang YJ, Hahn C, Liu B, Yang P (2012) ACS Nano 6:5060–5069

    Article  CAS  Google Scholar 

  13. Hagfeldt A, Boschloo G, Sun L, et al. (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  14. Corni I, Ryan MP, Boccaccini AR (2008) J Eur Ceram Soc 28:1353–1367

    Article  CAS  Google Scholar 

  15. Laxmidhar B, Liu M (2007) Prog Mater Sci 52:1–61

    Article  Google Scholar 

  16. Ferrari B, Moreno R (2010) J Eur Ceram Soc 30:1069–1078

    Article  CAS  Google Scholar 

  17. Brown DR, Salt FW (1965) J Appl Chem 15:40–48

    Article  CAS  Google Scholar 

  18. Sarkar P, Nicholson PS, Sarkar PNP (1996) J Am Ceram Soc 79:1987–2002

    Article  CAS  Google Scholar 

  19. Van der Biest OO, Vandeperre LJ (1999) Annu Rev Mater Sci 29:327–352

    Article  CAS  Google Scholar 

  20. Ammam M (2012) RSC Adv 2:7633–7646

    Article  CAS  Google Scholar 

  21. Chávez-Valdez A, Boccaccini AR (2012) Electrochim Acta 65:70–89

    Article  Google Scholar 

  22. Kawakita M, Uchikoshi T, Kawakita J, Sakka Y (2009) J Am Ceram Soc 92:984–989

    Article  CAS  Google Scholar 

  23. Uchikoshi T, Suzuki TS, Tang F, et al. (2004) Ceram Int 30:1975–1978

    Article  CAS  Google Scholar 

  24. Pascall AJ, Qian F, Wang G, et al. (2014) Adv Mater 26:2252–2256

    Article  CAS  Google Scholar 

  25. Singh A, English NJ, Ryan KM (2013) J Phys Chem B 117:1608–1615

    Article  CAS  Google Scholar 

  26. Chávez-Valdez A, Herrmann M, Boccaccini AR (2012) J Colloid Interface Sci 375:102–105

    Article  Google Scholar 

  27. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Langmuir 24:6659–6667

    Article  CAS  Google Scholar 

  28. Jassby D, Farner Budarz J, Wiesner M (2012) Environ Sci Technol 46:6934–6941

    Article  CAS  Google Scholar 

  29. Yum J-HH, Kim S-SS, Kim D-YY, Sung Y-EE (2005) J Photochem Photobiol A Chem 173:1–6

    Article  CAS  Google Scholar 

  30. Van Tassel JJ, Randall CA (2006) J Mater Sci 41:8031–8046

    Article  Google Scholar 

  31. Dor S, Rühle S, Ofir A, et al. (2009) Colloids Surf A Physicochem Eng Asp 342:70–75

    Article  CAS  Google Scholar 

  32. Jouyban A, Soltanpour S, Chan HK (2004) Int J Pharm 269:353–360

    Article  CAS  Google Scholar 

  33. Kijitori Y, Ikegami M, Miyasaka T (2007) Chem Lett 36:190–191

    Article  CAS  Google Scholar 

  34. Popa AM, Vleugels J, Vermant J, Van der Biest O (2006) J Eur Ceram Soc 26:933–939

    Article  CAS  Google Scholar 

  35. Tang F, Uchikoshi T, Ozawa K, Sakka Y (2006) J Eur Ceram Soc 26:1555–1560

    Article  CAS  Google Scholar 

  36. Umegaki T, Yan JM, Zhang XB, et al. (2009) Int J Hydrog Energy 34:3816–3822

    Article  CAS  Google Scholar 

  37. Hirai H, Chawanya H, Toshima N (1985) React Polym Ion Exch Sorbents 3:127–141

    Article  CAS  Google Scholar 

  38. Chen H-WW, Huang K-CC, Hsu C-YY, et al. (2010) Electrochim Acta 56:7991–7998

    Google Scholar 

  39. Eaton P, West P (2010) Atomic force microscopy. Oxford Univ Press

  40. Nečas D, Klapetek P (2012) Open Phys 10:181–188

    Google Scholar 

  41. Bard AJ, Faulkner LR (1944) Electrochemical methods fundamentals and applications. John Wiley, New York

    Google Scholar 

  42. Reynal A, Palomares E (2011) Eur J Inorg Chem 2011:4509–4526

    Article  CAS  Google Scholar 

  43. Rashin A (1990) J Phys Chem 94:1725–1733

    Article  CAS  Google Scholar 

  44. Farrokhi-Rad M, Shahrabi T (2012) J Am Ceram Soc 95:3434–3440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Iran National Science Foundation, Isfahan University of Technology Research Council (IUT), Isfahan Regional Electrical Company, and Center of Excellency in Sensor and Green Chemistry of IUT for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Rezaei.

Electronic supplementary material

ESM 1

(DOCX 1992 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, B., Taki, M. & Ensafi, A.A. Modulated electrical field as a new pulse method to make TiO2 film for high- performance photo-electrochemical cells and modeling of the deposition process. J Solid State Electrochem 21, 371–381 (2017). https://doi.org/10.1007/s10008-016-3363-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3363-8

Keywords

Navigation