Skip to main content
Log in

Electrochemical behavior of SeO2 in sodium citrate solution on a polycrystalline SnO2 electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 11 February 2016

Abstract

Preliminary results regarding the electrochemical behavior of Se(IV) in sodium citrate solution on a polycrystalline SnO2 electrode are presented. A schematic diagram of the energy levels for an n-type SnO2 electrode in contact with the working electrolyte was constructed. The results of cyclic voltammetry (CV) show that SeO 2−3 reduction occurs through a surface state in a complex multistep pathway. After a minute amount of Se is deposited, the electrode is expected to behave locally like a Schottky diode in contact with the solution. CV analysis and current transient results indicate that selenium growth on the polycrystalline SnO2 surface proceeds without nucleation. A thin Se film obtained at a potential of −0.8 V vs. Ag|AgCl, KCl(sat) was analyzed by lateral force and atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kozytskiy AV, Stroyuk OL, Kuchmiy SY (2014) Catal Today 230:227–233

    Article  CAS  Google Scholar 

  2. Khomane A (2010) J Alloys Compd 506:849–852

    Article  CAS  Google Scholar 

  3. Kumar S, Pradeep B (2010) J Alloys Compd 495:284–287

    Article  Google Scholar 

  4. Sanaty-Zadeh A, Raeissi K, Saidi A (2009) J Alloys Compd 485:402–407

    Article  CAS  Google Scholar 

  5. Massaccesi S, Sanchez S, Vedel J (1993) J Electrochem Soc 140:2540–2546

    Article  CAS  Google Scholar 

  6. Chandramohan R, Mahalingam T, Chu JP, Sebastian PJ (2005) J New Mat Electr Sys 8:143–148

    CAS  Google Scholar 

  7. Anand TJS, Sanjeeviraja C, Jayachandran M (2001) Vacuum 60:431–435

    Article  CAS  Google Scholar 

  8. Lai Y, Han C, Lv X, Yang J, Liu F, Li J, Liu Y (2012) J Electroanal Chem 671:73–79

    Article  CAS  Google Scholar 

  9. Liu F, Wang B, Lai Y, Li J, Zhang Z, Liu Y (2010) J Electrochem Soc 157:D523–D527

    Article  CAS  Google Scholar 

  10. Subramanianc B, Mahalingama T, Sanjeevirajaa C, Jayachandranb M, Chockalinga MJ (1999) Thin Solid Films 357:119–124

    Article  Google Scholar 

  11. Assaker IB, Elbedoui H, Chtourou R (2012) Electrochim Acta 81:149–154

    Article  Google Scholar 

  12. Prasher D, Rajaram P (2012) Electron Mater Lett 8:515–518

    Article  CAS  Google Scholar 

  13. Lai Y, Liu F, Zhang Z, Liu J, Li Y, Kuang S, Li J, Liu Y (2009) Electrochim Acta 54:3004–3010

    Article  CAS  Google Scholar 

  14. Dukstiene N, Kazancev K, Prosicevas I, Guobiene A (2004) J Solid State Electrochem April 8:330–336

    Article  CAS  Google Scholar 

  15. Hahn BP, Stevenson KJ (2010) J Electroanal Chem 638:151–160

    Article  CAS  Google Scholar 

  16. Dye RC, Snow RC (2001) Thermally tolerant multilayer metalmembrane Patent 6,214,090, USA

  17. Bolivar H, Izquierdo S, Tremont R, Cabrera CR (2003) J Appl Electrochem 33:1191–1198

    Article  CAS  Google Scholar 

  18. Rodriguez FJ, Sebastian PJ (1999) Int J Hydrog Energy 25:243–247

    Article  Google Scholar 

  19. Dukstiene N, Tatariskinaite L (2006) Pol J Chem 80:1715–1729

    CAS  Google Scholar 

  20. Scott MJ, Morgan JJ (1996) Environ Sci Technol 30:1990–1996

    Article  CAS  Google Scholar 

  21. Steponavičius A, Šimkūnaitė D, Valsiūnas I, Baltrūnas G (2011) Chemija 22:91–97

    Google Scholar 

  22. Santos MC, Machado SAS (2004) J Electroanal Chem 567:203–210

    Article  CAS  Google Scholar 

  23. Cabrala MF, Pedrosab VA, Spinola Machadoa SA (2010) Electrochim Acta 55:1184–1192

    Article  Google Scholar 

  24. Liu J, Liu F, Lai Y, Zhang Z, Li J, Liu Y (2011) J Electroanal Chem 651:191–196

    Article  CAS  Google Scholar 

  25. Lai Y, Liu F, Li J, Zhang Z, Liu Y (2010) J Electroanal Chem 639:187–192

    Article  CAS  Google Scholar 

  26. Li J, Jiang L, Wang B, Liu F, Yang J, Tang D, Lai Y, Li J (2013) Electrochim Acta 87:153–157

    Article  CAS  Google Scholar 

  27. Pathan HM, Min SK, Jung KD, Joo OS (2006) Electrochem Commun 8:273–278

    Article  CAS  Google Scholar 

  28. Gomez E, Pellicer E, Walles E (2001) J Electroanal Chem 517:109–116

    Article  CAS  Google Scholar 

  29. Alekperov AI (1974) Russ Chem Rev 43:235–250

    Article  Google Scholar 

  30. Krumm R, Guel B, Schmitz C, Staikov G (2000) Electrochim Acta 45:3255–3262

    Article  CAS  Google Scholar 

  31. Goossens A, Schoonman J (1992) J Electrochem Soc 139:893–900

    Article  CAS  Google Scholar 

  32. Dutoit EC, Van Meirhaeghe RL, Cardon F, Gomes WP (1975) Ber Bunsenges Phys Chem 79:1206–1213

    Article  CAS  Google Scholar 

  33. Nogami G (1982) J Electrochem Soc 129:2219–2223

    Article  CAS  Google Scholar 

  34. Oskam G, Vanmaekelbergh D, Kelly JJ (1991) J Electroanal Chem 315:65–85

    Article  CAS  Google Scholar 

  35. Wang YB, Yuan RK, Wilander M (1996) Appl Phys A Mater Sci Process 63:481–486

    Article  CAS  Google Scholar 

  36. Hens Z, Gomes WP (1999) Phys Chem Chem Phys 1:3617–3625

    Article  CAS  Google Scholar 

  37. Aghassi A, Jafarian M, Danaee I, Gobal F, Mahjani MG (2011) J Electroanal Chem 661:265–269

    Article  CAS  Google Scholar 

  38. Gomes WP, Vanmaekelbergh D (1996) Electrochim Acta 41:967–973

    Article  CAS  Google Scholar 

  39. Hanzu I, Djenizian T, Knauth P (2011) J Phys Chem C 115:5989–5996

    Article  CAS  Google Scholar 

  40. Muñoz AG (2007) Electrochim Acta 52:4167–4176

    Article  Google Scholar 

  41. Tsuchiya H, Macak JM, Ghicov A, Rader AS, Taveira L, Schmuki P (2007) Corros Sci 49:203–210

    Article  CAS  Google Scholar 

  42. Mahajan VK, Mohapatra SK, Misra M (2008) Int J Hydrog Energy 33:5369–5374

    Article  CAS  Google Scholar 

  43. Yadav AA, Masumdar EU (2010) Sol Energy 84:1445–1452

    Article  CAS  Google Scholar 

  44. Bedja I, Kamat PV (1995) J Phys Chem 99:9182–9188

    Article  CAS  Google Scholar 

  45. Hattori A, Tokihisa Y, Tada H, Tohge N, Ito S, Hongo K, Shiratsuchi R, Nogami G (2001) J Sol–gel Sci Tech 22:53–61

    Article  CAS  Google Scholar 

  46. Kötz R, Stucki S, Carcer B (1991) J Appl Electrochem 21:14–20

    Article  Google Scholar 

  47. Sawant RR, Shinde SS, Bhosale CH, Rajpure KY (2010) Sol Energy 84:1208–1215

    Article  CAS  Google Scholar 

  48. Batzill M, Diebold U (2005) Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  49. Chandra S (1985) Photoelectrochemical Solar Cells (Electrocomponent Science Monographs). Gordon and Breach Science Publishers, York New

    Google Scholar 

  50. Ishikawa A, Takata T, Junko Kondo N, Hara M, Domen K (2004) J Phys Chem B 108:11049–11053

    Article  CAS  Google Scholar 

  51. Dukštienė N, Sinkevičiūtė D (2013) J Solid State Electrochem 17:1175–1184

    Article  Google Scholar 

  52. Bouroushian M (2010) Electrochemistry of Metal Chalcogenides, Monographs in Electrochemistry Chapter 2. Electrochemistry of Chalcogens. Springer-Verlag, Berlin, pp 57–75

    Google Scholar 

  53. Cabral MF, Suffredini HB, Pedrosa VA, Tanimoto ST, Machado SAS (2006) Appl Surf Sci 254:5612–5617

    Article  Google Scholar 

  54. Sun Y, Tian X, He B, Yang C, Pi Z, Wang Y, Zhang S (2011) Electrochim Acta 56:8305–8310

    Article  CAS  Google Scholar 

  55. Chen PY, Hu SF, Liu RS, Huang CY (2011) Thin Solid Films 519:8397–8400

    Article  CAS  Google Scholar 

  56. Johanson RE, Kasap SO, Rowlands J, Polischuk B (1998) J Non-Cryst Solids 227:1359–1362

    Article  Google Scholar 

  57. Islam MN, Hakim MO (1986) J Mater Sci Lett 5:63–65

    Article  CAS  Google Scholar 

  58. Huang X, Chen Y, Zhou J, Zhang Z, Zhang J (2013) J Electroanal Chem 709:83–92

    Article  CAS  Google Scholar 

  59. Schindler W, Hugelmann P, Hugelmann M, Kartner FX (2002) J Electroanal Chem 522:49–57

    Article  CAS  Google Scholar 

  60. Shen C, Zhang X, Li H (2001) Mater Sci Eng B 84:265–270

    Article  Google Scholar 

  61. Riveros G, Henrı́quez R, Córdova R, Schrebler R, Dalchiele EA, Gómez H (2001) J Electroanal Chem 504:160–165

    Article  CAS  Google Scholar 

  62. Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Nano Lett 6:238–242

    Article  CAS  Google Scholar 

  63. Radisic A, Ross FM, Searson PC (2006) J Phys Chem B 110:7862–7868

    Article  CAS  Google Scholar 

  64. Milchev A, Zapryanova T (2006) Electrochim Acta 51:4916–4921

    Article  CAS  Google Scholar 

  65. Kelaidopoulou A, Kokkinidis G, Milchev A (1998) J Electroanal Chem 444:195–201

    Article  CAS  Google Scholar 

  66. Gamburg YD, Zangari G (2011) Theory and Practice of Metal Electrodeposition, LLC Chapter 2 The Structure of the Metal-Solution Interface, Springer Science Business Media

  67. Simonov AN, Cherstiouk OV, Vassiliev SY, Zaikovskii VI, Filatov AY, Rudina NA, Savinova ER, Tsirlina GA (2014) Electrochim Acta 150:279–289

    Article  CAS  Google Scholar 

  68. Majidi MR, Asadpour-Zeynali K, Hafezi B (2009) Electrochim Acta 54:1119–1126

    Article  CAS  Google Scholar 

  69. Vlaev L, Tavlieva M, Barthel J (2007) J Solut Chem 36:447–465

    Article  CAS  Google Scholar 

  70. Vlaev LT, Genieva SD (2004) J Struct Chem 45:825–831

    Article  CAS  Google Scholar 

  71. Khelladi MR, Mentar L, Azizi A, Sahari A, Kahoul A (2009) Mater Chem Phys 115:385–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sinkevičiūtė.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dukštienė, N., Sinkevičiūtė, D. & Tatariškinaitė, L. Electrochemical behavior of SeO2 in sodium citrate solution on a polycrystalline SnO2 electrode. J Solid State Electrochem 20, 813–825 (2016). https://doi.org/10.1007/s10008-015-2974-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2974-9

Keywords

Navigation