Skip to main content
Log in

Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical performance of SnO2 as an anode material with high oxygen gas-evolution overpotential was investigated in view of its application for electrochemical oxidation of bio-refractory organics in waste waters. The influence of the doping agent (Sb, F, Cl) and doping level on the oxygen-evolution reaction was studied in terms of Tafel slope, oxygen-overpotential and exchange current densities for the Ce3+→Ce4+ reaction. Tafel slopes of about 300 mV decade−1 were found and the oxygen evolution overpotential was 600mV higher than that of platinum. While the doping level had no significant influence on Tafel slopes and oxygen overpotentials the stability of the SnO2 electrode increased with charge carrier density. The oxidation of phenol was investigated as a test for the oxidizing power of the new anode material when compared to Pt or PbO2. The rate of phenol removal was much higher for SnO2 than for PbO2 or Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Ross, M. Finkelstein and E. J. Rudd, ‘Anodic Oxidation’ Academic Press, New York (1975).

    Google Scholar 

  2. M. Josowicz, in ‘Anodische Oxidation in der Wasser- und Lufthygiene’ (edited by A. Reis), G-I-T Verlag/E. Giebeler, Darmstadt (1981) p. 133.

    Google Scholar 

  3. E. Plattner and C. Comninellis, in ‘Process Technologies for Water Treatment’ (edited by S. Stucki) Plenum, New York (1988) p. 205.

    Google Scholar 

  4. V. Smith de Surce and A. P. Watkinson,Canadian J. Chem. Eng 59 (1981) 52.

    Google Scholar 

  5. J. A. Harrison and J. M. Mayne,Electrochimica Acta 28 (1983) 1223.

    Google Scholar 

  6. D. W. Kirk, H. Sharifian and F. R. Foulkes,J. Applied Electrochem. 15 (1985) 285.

    Google Scholar 

  7. D. T. Chin and C. Y. Cheng,J. Electrochem. Soc. 132 (1985) 2605.

    Google Scholar 

  8. D. Wabner, C. Grambow and A. Ritter,Vom Wasser 64 (1985) 269.

    Google Scholar 

  9. H. Sharifian and D. W. Kirk,J. Electrochem. Soc. 133 (1986) 921.

    Google Scholar 

  10. I. F. McConvey, K. Scott, J. M. Henderson and A. N. Haines.Chem. Eng. Process. 22 (1987) 231.

    Google Scholar 

  11. C. Comniellis and E. Plattner,Chimia 42 (1988) 250.

    Google Scholar 

  12. P. C. Foller and C. W. Tobias,J. Electrochem. Soc. 129 (1982) 506.

    Google Scholar 

  13. R. Kötz and S. Stucki,J. Electroanal. Chem. 228 (1987) 407.

    Google Scholar 

  14. A. Nanthakumar and N. R. Armstrong, Tin Oxide (SnO2), Indium Oxide (In2O3) and Tungsten Oxide (WO3), in ‘Semiconductor Electrodes’ (edited by H. O. Finklea), Elsevier, Amsterdam (1988) p. 203–41.

    Google Scholar 

  15. Z. M. Jarzebski and J. P. Marton,J. Electrochem. Soc. 123 (1976) 199C.

    Google Scholar 

  16. 123 (1976) 299C.

    Google Scholar 

  17. 123 (1976) 333C.

    Google Scholar 

  18. K. L. Chopra, S. Major and D. K. Pandya,Thin Solid Films 102 (1983) 1.

    Google Scholar 

  19. H. Neff, F. Foditsch and R. Kötz,J. Electron Spectr. Rel. Phen. 33 (1984) 171.

    Google Scholar 

  20. H. Kim and H. A. Laitinen,J. Electrochem. Soc. 122 (1975) 53.

    Google Scholar 

  21. H. A. Laitinen, C. A. Vincent and T. M. Bednarski,115 (1968) 1024.

    Google Scholar 

  22. J. W. Schultze and L. Elfenthal,J. Electroanal. Chem. 204 (1986) 153.

    Google Scholar 

  23. D. Elliott, D. L. Zellmer and H. A. Laitinen,J. Electrochem. Soc. 117 (1970) 1343.

    Google Scholar 

  24. B. Pettinger, H. R. Schöppel and H. Gerischer,Ber. d. Bunsen Gesellschaft 78 (1974) 450.

    Google Scholar 

  25. S. D. Razumovskii and G. E. Zaikow ‘Ozone and its Reactions with Organic Compounds’, Elsevier, Amsterdam (1984) chapter 7, p. 272.

    Google Scholar 

  26. M. D. Gurol and P. C. Singer,Water Res. 17 (1983) 1163.

    Google Scholar 

  27. 17 (1983) 1173.

    Google Scholar 

  28. J. Hoigne and H. Bader,17 (1983) 185.

    Google Scholar 

  29. P. A. Cox, R. G. Egdell, C. Harding, W. R. Patterson and P. J. Taverner,Surf. Sci. 123 (1982) 179.

    Google Scholar 

  30. R. G. Egdell, W. R. Flavell and P. Taverner,J. Solid State Chem. 51 (1984) 345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kötz, R., Stucki, S. & Carcer, B. Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. J Appl Electrochem 21, 14–20 (1991). https://doi.org/10.1007/BF01103823

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01103823

Keywords

Navigation