Skip to main content
Log in

Electrochemical Synthesis of In2Se3 Thin Films from Citrate Bath. Structural, Optical and Morphological Investigations

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, indium selenide In2Se3 thin films were synthesized by electrodeposition in potentiostatic mode from aqueous solution containing InCl3 and SeO2 in acid medium (pH 4.2) with sodium citrate as complexing agent at ambient temperature with heat treatment of electrodeposited films at different temperatures. Voltammetry method was used to investigate the electrochemical behavior of the electrodeposition bath. The structural characterization of elaborate films was performed by X-rays diffraction (XRD) and Raman spectroscopy, the morphological one was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), the UV–Visible spectrophotometry was used to investigate their optical proprieties, whereas the Mott–Schottky measurement was used also to study their semiconducting properties. The results showed that the annealed deposit at 350, 450°C and the as-deposited films take the rhombohedral β-crystalline phase hR5 of In2Se3, as-deposited and annealed In2Se3 are photoactive thin films with band-gap energies 1.33, 1.55 eV respectively and belong to n-type semiconductors with number of charge carriers in order of 1021/cm3. The obtained deposits have nanometric grain size and less roughness surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Marsillac, S., Combot Marie, A.M., Bernede, J.C., and Conan, A., Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction, Thin Solid Films, 1996, vol. 288, p. 14.

    Article  CAS  Google Scholar 

  2. Hariskos, D., Spiering, S., and Powalla, M., Buffer layers in Cu(In,Ga)Se2 solar cells and modules, Thin Solid Films, 2005, vol. 480, p. 99.

    Article  CAS  Google Scholar 

  3. Gordillo, G. and Calderón, C., CIS thin film solar cells with evaporated InSe buffer layers, Sol. Energy Mater. Sol. Cells, 2003, vol. 77, p. 163.

    Article  CAS  Google Scholar 

  4. Thomas, B., Effect of in situ post-deposition annealing on the formation of α-In2Se3 thin films grown by elemental evaporation, Appl. Phys. A, 1992, vol. 54, p. 293.

    Article  Google Scholar 

  5. Amory, C., Bernede, J.C., Halgand, E., and Marsillac, S., Cu(In,Ga)Se2 films obtained from γ-In2Se3 thin film, Thin Solid Films, 2003, vol. 431–432, p. 22.

    Article  CAS  Google Scholar 

  6. Li, S., Yan, Y., Zhang, Y., Ou, Y., Ji, Y., Liu, L., Yan, C., Zhao, Y., and Yu, Z., Monophase γ-In2Se3 thin film deposited by magnetron radio-frequency sputtering, Vacuum, 2014, vol. 99, p. 228.

    Article  CAS  Google Scholar 

  7. Yan, Y., Li, S., Ji, Y., Liu, L., Yan, C., Zhang, Y., Yu, Z., and Zhao, Y., Fabrication of high-quality γ-In2Se3 nanostructures using magnetron sputtering, Mater. Lett., 2013, vol. 109, p. 291.

    Article  CAS  Google Scholar 

  8. Bernède, J.C., Marsillac, S., and Conan A., Electrical properties of γ-In2Se3 layers synthesized by solid state reaction between In and Se thin films, Mater. Chem. Phys., 1997, vol. 48, p. 5.

    Article  Google Scholar 

  9. Hsiang, H.I., Lu, L.H., Chang, Y.L., Ray, D., and Yen, F.S., CuInSe2 nanocrystallite reaction kinetics using solid state reaction from Cu2Se and In2Se3 powders, J. Alloys Compd., 2011, vol. 509, p. 6950.

    Article  CAS  Google Scholar 

  10. Okamoto, T., Yamada, A., and Konagai, M., Growth and characterization of In2Se3 epitaxial films by molecular beam epitaxy, J. Cryst. Growth, 1997, vol. 175, p. 1045.

    Article  Google Scholar 

  11. Chang, K.J., Lahn, S.M., Xie, Z.J., Chang, J.Y., Uen, W.Y., Lu, T.U., Lin, J.H., and Lin, T.Y., The growth of single-phase In2Se3 by using metal organic chemical vapor deposition with AlN buffer layer, J. Cryst. Growth, 2007, vol. 306, p. 283.

    Article  CAS  Google Scholar 

  12. Huang, Y.C., Li, ZY., Uen, W.Y., Lan, S.M., Chang, K.J., Xie, Z.J., Chang, J.Y., Wang, S.C., and Shen, J.L., Growth of γ-In2Se3 films on Si substrates by metal-organic chemical vapor deposition with different temperatures, J. Cryst. Growth, 2008, vol. 310, p. 1679.

    Article  CAS  Google Scholar 

  13. Wei, X.F., Li, L.W., Feng, H.G., Gong, J.B., Jiang, K., and Xue, S.L., Preparation and optical properties of In2Se3 nanospheres using CTAB as surface modifier, Ceram. Int., 2020, vol. 46, p. 1026.

    Article  CAS  Google Scholar 

  14. Simi, N.J., Vanchipurackal, and Ison, V., Structural and optical characterization of CuInS2–In2Se3 green nanostructures synthesized by hot injection method, Mater. Today Proc., 2019, vol. 8, p. 203.

    Article  CAS  Google Scholar 

  15. Wei, X., Feng, H., Li, L., Gong, J., Jiang, K., Xue, S., and Chu, P.K., Synthesis of tetragonal prismatic γ‑In2Se3 nanostructures with predominantly {110} facets and photocatalytic degradation of tetracycline, Appl. Catal. B, 2020, vol. 260, p. 118218.

    Article  CAS  Google Scholar 

  16. Massaccesi, S., Sanchez, S., and Vedel, J., Electrodeposition of indium selenide In2Se3, J. Electroanal. Chem., 1996, vol. 412, p. 95.

    Article  Google Scholar 

  17. Valdés, M., Vázquez, M., and Goossens, A., Electrodeposition of CuInSe2 and In2Se3 on flat and nanoporous TiO2 substrates, Electrochim. Acta, 2008, vol. 54, p. 524.

    Article  CAS  Google Scholar 

  18. Lai, Y., Liu, F., Li, J., Zhang, Z., and Liu, Y., Nucleation and growth of selenium electrodeposition onto tin oxide electrode, J. Electroanal. Chem., 2010, vol. 639, p. 187.

    Article  CAS  Google Scholar 

  19. Wang, J., Li, Q., Mu, Y., Li, S., Yang, L., Lv, P., Su, S., Liu, T., Fu, W., and Yang, H., Fabrication of CdTe thin films grown by the two-step electrodeposition technique on Ni foils, J. Alloys Compd., 2015, vol. 636, p. 97.

    Article  CAS  Google Scholar 

  20. Czerniawski, J.M. and Stickney, J.L., Electrodeposition of In2Se3 using potential pulse atomic layer deposition, J. Phys. Chem. C, 2016, vol. 120, p. 16162.

    Article  CAS  Google Scholar 

  21. Herrero, J. and Ortega, J., Electrochemical synthesis of photoactive In2Se3 thin films, Sol. Energy Mater., 1987, vol. 16, p. 477.

    Article  CAS  Google Scholar 

  22. Shi, H., Li, M., Shaygan Nia, A., Wang, M., Park, S., Zhang, Z., Lohe, R.M., Yang, S., and Feng, X., Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics, Adv. Mater., 2020, vol. 32, p. 1907244.

    Article  CAS  Google Scholar 

  23. Pourbaix, M., Atlas d’équilibre électrochimique à 25°C, Gauthier-Villars et Cie, 1963.

    Google Scholar 

  24. Zein El Abedin, S., Saad, A.Y., Farag, H.K., Borisenko, N., Liu, Q.X., and Endres, F., Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures, Electrochim. Acta, 2007, vol. 52, p. 2746.

    Article  CAS  Google Scholar 

  25. Senthikumar, M., Mathiyarasu, J., Joseph, J., Phani, K.L.N., and Yegnaraman, V., Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization, Mater. Chem. Phys., 2003, vol. 108, p. 403.

    Article  CAS  Google Scholar 

  26. Lutz, H. D., Fischer, M., Baldus, H.-P., and Blachnik, R., Zur polymorphie des In2Se3, J. Less-Common Met., 1988, vol. 143, p. 83.

    Article  CAS  Google Scholar 

  27. Jenkins, R. and Snyder, R.L., Introduction to X-ray Powder Diffractometry, New York: Wiley, 1996.

    Book  Google Scholar 

  28. Weszka, J., Daniel, P., Burian, A., Burian, A.M., and Nguyen, A.T., Raman scattering in In2Se3 and InSe2 amorphous films, J. Non-Cryst. Solids, 2000, vol. 265, p. 98.

    Article  CAS  Google Scholar 

  29. Singh, R.P., Singh, S.L., and Chandra, S., Electrodeposited semiconducting CuInSe2 films. I. Preparation, structural and electrical characterization, J. Phys. D: Appl. Phys., 1986, vol. 19, p. 1299.

    Article  CAS  Google Scholar 

  30. Gonzalez-Hernandez, J., Gorley, P.M., Holrley, P.P., Vartsabyuk, O.M., and Vorobiev, Yu.V., X-ray, kinetic and optical properties of thin CuInS2 films, Thin Solid Films, 2002, vol. 403-404, p. 471.

    Article  CAS  Google Scholar 

  31. Yamaguchi, T., Yamamoto, Y., Tanaka, T., Tanashi, N., and Yoshida, A., Influence of annealing temperature on the properties of Cu(In,Ga)Se2 thin films by thermal crystallization in Se vapor, Sol. Energy Mater. Sol. Cells, 1998, vol. 50, p. 1.

    Article  CAS  Google Scholar 

  32. Huang, C.J., Meen, T.H., Lai, M.Y., and Chen, W.R., Formation of CuInSe2 thin films on flexible substrates by electrodeposition (ED) technique, Sol. Energy Mater. Sol. Cells, 2004, vol. 82, p. 553.

    CAS  Google Scholar 

  33. Sadigov, M.S., Ozkan, M., Bacaksiz, E., Altunbas, M., and Kopya, A.I., Production of CuInSe2 thin films by a sequential processes of evaporations and selenization, J. Mater. Sci., 1999, vol. 34, p. 4579.

    Article  CAS  Google Scholar 

  34. Tripathy, S.K., Refractive indices of semiconductors from energy gaps, Opt. Mater., 2015, vol. 46, p. 240.

    Article  CAS  Google Scholar 

  35. El-Shair, H.T. and Bekheet, A.E., Effect of heat treatment on the optical properties of In2Se3 thin films, J. Phys. D: Appl. Phys., 1992, vol. 25, p. 1122.

    Article  CAS  Google Scholar 

  36. Aly, S.A., El Sayed, N.Z., and Kaid, M.A., Effect of annealing on the optical properties of thermally evaporated ZnO films, Vacuum, 2001, vol. 61, p. 1.

    Article  CAS  Google Scholar 

  37. Qasrawi, A.F., Temperature dependence of the direct allowed transitions band gap and optical constants of polycrystalline α-In2Se3 thin films, Thin Solid Films, 2006, vol. 514, p. 267.

    Article  CAS  Google Scholar 

  38. El-Nahass, M.M., Saleh, A.-B.A., Darwish, A.A.A., and Bahlol, M.H., Optical properties of nanostructured InSe thin films, Opt. Commun., 2012, vol. 285, p. 1221.

    Article  CAS  Google Scholar 

  39. Peng, L.P., Fang, L., Yang, X.F., Li, Y.J., Huang, Q.L., Wu, F., and Kong, C.Y., Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films, J. Alloys Compd., 2009, vol. 484, p. 575.

    Article  CAS  Google Scholar 

  40. Rousset, J., Saucedo, E., and Lincot, D., Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications, Chem. Mater., 2009, vol. 21, p. 534.

    Article  CAS  Google Scholar 

  41. Windisch, C.F. and Exarhos, G.J., Mott–Schottky analysis of thin ZnO films, J. Vac. Sci. Technol., 2000, vol. 18, p. 1677.

    Article  CAS  Google Scholar 

  42. Mora-Sero, I., Fabregat-Santiago, F., Denier, B., Bisquert, J., Tena-Zaera, R., Elias, J., and Levy-Clement, C., Determination of carrier density of ZnO nanowires by electrochemical techniques, Appl. Phys. Lett., 2006, vol. 89, p. 203117.

    Article  CAS  Google Scholar 

  43. Morrison, S.R., Electrochemistry at Semiconductor and Oxidized Metal Electrodes, New York: Plenum Press, 1980.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Energetic and Solid State Electrochemistry Laboratory (Ferhat Abbas-Setif 1 University-Algeria); the authors would like to thank ZAIM Keltoum and DERBAL Sabrine for their assistances.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oualid Dilmi or Mohamed Benaicha.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oualid Dilmi, Mohamed Benaicha Electrochemical Synthesis of In2Se3 Thin Films from Citrate Bath. Structural, Optical and Morphological Investigations. Russ J Electrochem 57, 462–470 (2021). https://doi.org/10.1134/S1023193521050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521050049

Keywords:

Navigation