Skip to main content
Log in

Organoclay-modified electrodes: preparation, characterization and recent electroanalytical applications

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Amperometric sensors dedicated to the determination of pollutants and other compounds of interest face daily a great challenge: the development of sensitive, reproducible and low-cost devices allowing fast analyses. This review deals with the beneficial role and application of organoclays exploited as sensing materials in various fields of electroanalysis, for the past 15 years (period 2000–2014). After a description of different preparation methods leading to clay minerals chemically modified by organic compounds, the common methods used for their characterization are exposed; then, their application as electrode modifiers is described, covering several approaches that were developed to enhance either the sensitivity or the selectivity of the indexed organoclay-based sensors. Finally, a brief description of voltammetric methods frequently used for electroanalytical purposes is given, followed by an update of recent and salient results achieved for the detection of inorganic and organic electroactive compounds or ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2,4-DCP:

2,4-Dicholorophenol

2Mpy:

o-(2-Mercaptopyridine)

4MPy:

p-(4-mercaptopyridine)

APTES:

γ-Aminopropyltrimethoxysilane

AQ:

Anthraquinone

ASCV:

Anodic stripping cyclic voltammetry

ASDPV:

Anodic stripping differential pulse voltammetry

ATTA:

Attapulgite

BHIC:

1-Benzyl-3-(2-hydroxyethyl) imidazolium chloride

BT:

Bentonite

BTMA:

Benzyltrimethylammonium

CEC:

Cation exchange capacity

CMC:

Carboxymethylcellulose

CPE:

Carbon paste electrode

CPTES:

3-Chloropropyltriethoxysilane

CTA:

Cetyltrimethylammonium

DDA:

Dodecylamine

DDBA:

Dodecyl dimethylbenzylammonium

DDMA:

Didodecyldimethyl ammonium

DDTMA:

Dodecyltrimethylammonium

DO2+ :

P-Phenylenedimethylene bis dodecyl N,N dimethylammonium dibromide

DPV:

Differential pulse voltammetry

EASA:

Electro-assisted self-assembly

EIS:

Electrochemical Impedance Spectroscopy

EG:

Expanded graphite

FHT:

Fluorohectorite

GA:

Gallic acid

GCE:

Glassy carbon electrode

HDTBP:

Hexadecyltributhylphosphonium

HDTMA:

Hexadecyltrimethylammonium

HEPC:

1-(2-Hydroxyethyl)-pyridiniumchloride

HV/RDE:

Hydrodynamic voltammetry/rotating disk electrode

Im:

1-(2-Hydroxyethyl)-3-methylimidazolium chloride

KT:

Kaolinite

MAS-NMR:

Magic angle spinning-nuclear magnetic resonance

MAT:

2-Mercapto-5-amino-1,3,4-thiadiazole

MC:

Methylcellulose

MCC:

Methylcarboxycellulose

MMT:

Montmorillonite

MPTMS:

3-Mercaptopropyltrimethoxysilane

MCV:

Multisweep cyclic voltammetry

nd:

Not determined

OME:

Organoclay-modified electrode

OP:

1,10-Phenanthroline

PANI:

Polyaniline

PCH-SHn%:

Thiol-functionalized porous clay heterostructures (with n varying between 4 and 35)

PMB:

Poly(methyleneblue)

PPMA:

Phosphomolybdic acid

PPTA:

Phosphotungstic acid

PTMPA:

Phenyltrimethylammonium

PVA:

Poly(vinyl alcohol)

Ru(bpy)3 2+ :

Tris(2,2′bipyridyl)ruthenium(II)

SA:

Salicylic acid

SCE:

Saturated calomel electrode

SM:

Smectite

SSA:

Specific surface area

SWV:

Square wave voltammetry

TBAB:

Tetrabutylammonium bromide

TDD:

1,3,4-Thiadiazole-2,5-dithiol

TEA:

Triethanolamine

TEOS:

Tetraethoxysilane

TMA:

Tetramethylammonium

TMPA:

Trimethylpropylammonium

References

  1. Benoit G (1994) Clean technique measurement of Pb, Ag and Cd in freshwater: a redefinition of metal pollution. Environ Sci Technol 28:1987–1991

    CAS  Google Scholar 

  2. Florea RM, Stoica AI, Baiulescu GE, Capota P (2004) Water pollution in gold mining industry: a case study in Rosia Montana district; Romania. Environ Geol 48:1132–1136

    Google Scholar 

  3. Johnson S, Adams R (1991) The on-farm costs of reducing groundwater pollution. Am J Agric Econ 73:1063–1073

    Google Scholar 

  4. Lockeretz W (1994) Soil and water quality: an agenda for agriculture. Environment 36:28–31

    Google Scholar 

  5. Luo L, Wang X, Ding Y, Li Q, Jia J, Deng D (2010) Voltammetric determination of Pb2+ and Cd2+ with montmorillonite–bismuth–carbon electrodes. Appl Clay Sci 50:154–157

    CAS  Google Scholar 

  6. Zhang S, He P, Lei W, Zhang G (2014) Novel attapulgite/polyaniline/phosphomolybdic acid-based modified electrode for the electrochemical determination of iodate. J Electroanal Chem 724:29–35

    CAS  Google Scholar 

  7. He H, Tao Q, Zhu J, Yuan P, Shen W, Yang S (2013) Silylation of clay mineral surfaces. Appl Clay Sci 71:15–20

    CAS  Google Scholar 

  8. Rong MZ, Zhang MQ, Ruan WH (2006) Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater Sci Technol 22:787–796

    CAS  Google Scholar 

  9. Park M, Shim IK, Jung EY, Choy JH (2004) Modification of external surface of laponite by silane grafting. J Phys Chem Solids 65:499–501

    CAS  Google Scholar 

  10. Piscitelli F, Posocco P, Toth R, Fermeglia M, Pricl S, Mensitieri G, Lavorgna M (2010) Sodium montmorillonite silylation: unexpected effect of the aminosilane chain length. J Colloid Interf Sci 351:108–115

    CAS  Google Scholar 

  11. Lagaly G, Ogawa M, Dékany I (2013) Clay minerals organic interactions In: Bergaya F, Lagaly G (eds.), 2nd edition, Handbook of clay science. Developments in Clay Science, vol. 5A, Elsevier, pp. 435–505

  12. Zen JM, Kumar AS, Tsai DM (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15(13):1073–1087

    CAS  Google Scholar 

  13. Mousty C (2004) Sensors and biosensors based on clay-modified electrodes-new trends. Appl Clay Sci 27:159–177

    CAS  Google Scholar 

  14. Mousty C (2010) Biosensing applications of clay-modified electrodes: a review. Anal Bioanal Chem 396:315–325

    CAS  Google Scholar 

  15. de Paiva LB, Morales AR, Valenzuela-Díaz FR (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42:8–24

    Google Scholar 

  16. He H, Ma L, Zhu J, Frost RL, Theng BKG, Bergaya F (2014) Synthesis of organoclays: a critical review and some unresolved issues. Appl Clay Sci 100:22–28

    CAS  Google Scholar 

  17. Lee SM, Tiwari D (2012) Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview. Appl Clay Sci 59–60:84–102

    Google Scholar 

  18. Lee SY, Echo WJ, Kim KJ, Ahn JH, Lee M (2005) Interaction between cationic surfactants and montmorillonites under nonequilibrium condition. J Colloid Interf Sci 284:667–673

    CAS  Google Scholar 

  19. Mojovic Z, Jovic-Jovici N, Milutinovic-Nikolic A, Bankovic P, Rabi-Stankovic AA, Jovanovic D (2011) Phenol determination on HDTMA-bentonite-based electrodes. J Hazard Mater 194:178–184

    CAS  Google Scholar 

  20. Tunney JJ, Detellier C (1993) Interlamellar covalent grafting of organic units on kaolinite. Chem Mater 5:747–748

    CAS  Google Scholar 

  21. Brandt KB, Elbokl TA, Detellier C (2003) Intercalation and interlamellar grafting of polyols in layered aluminosilicates. D-Sorbitol and adonitol derivatives of kaolinite. J Mater Chem 13:2566–2572

    CAS  Google Scholar 

  22. Yao H, Zhu J, Morgan AB, Wilkie CA (2002) Crown ether-modified clays and their polystyrene nanocomposites. Polym Eng Sci 42:1808–1814

    CAS  Google Scholar 

  23. Shen YH (2001) Preparations of organobentonite using nonionic surfactants. Chemosphere 44:989–995

    CAS  Google Scholar 

  24. Akyüz S, Akyüz T (2003) FT-IR spectroscopic investigations of surface and intercalated 2-aminopyrimidine adsorbed on sepiolite and montmorillonite from Anatolia. J Mol Struct 651–653:205–210

    Google Scholar 

  25. Sugahara Y, Satokawa S, Yoshioka K, Kuroda K, Kato C (1989) Kaolinite–pyridine intercalation compound derived from hydrated kaolinite. Clay Clay Miner 37:143–150

    CAS  Google Scholar 

  26. Chaiko DJ (2003) New poly(ethylene oxide)-clay composites. Chem Mater 15:1105–1110

    CAS  Google Scholar 

  27. Komori Y, Sugahara Y, Kuroda K (1999) Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate. Appl Clay Sci 15:241–252

    CAS  Google Scholar 

  28. Ngassa GBP, Tonle IK, Walcarius A, Ngameni E (2014) One-step co-intercalation of cetyltrimethylammonium and thiourea in smectite and application of the organoclay to the sensitive electrochemical detection of Pb(II). Appl Clay Sci 99:297–305

  29. Tonle IK, Ngameni E, Njopwouo D, Carteret C, Walcarius A (2003) Functionalization of natural smectite-type clays by grafting with organosilanes: physico-chemical characterization and application to mercury(II) uptake. Phys Chem Chem Phys 5:4951–4961

    CAS  Google Scholar 

  30. Sayılkan H, Erdemoglu S, Sener S, Sayılkan F, Akarsu M, Erdemoglu M (2004) Surface modification of pyrophyllite with aminosilane coupling agent for the removal of 4-nitrophenol from aqueous solutions. J Colloid Interf Sci 275:530–538

    Google Scholar 

  31. Jal PK, Pate SL, Mishra BK (2004) Chemical modification of silica surface by immobilization of function groups for extractive concentration of metal ions. Talanta 62:1005–1028

    CAS  Google Scholar 

  32. van der Voort P, Vansant EF (1997) Modification of the silica surface with aminosilanes. Polish J Chem 71(5):550–567

    Google Scholar 

  33. Impens NREN, van der Voort P, Vansant EF (1999) Silylation of micro-, meso- and non-porous oxides: a review. Microporous Mesoporous Mater 28(2):217–232

    CAS  Google Scholar 

  34. He H, Tao Q, Zhu J, Yuan P, Shen W, Yang S (2013) Silylation of clay mineral surface. Appl Clay Sci 71:15–20

    CAS  Google Scholar 

  35. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, Amsterdam

    Google Scholar 

  36. Tunney JJ, Detellier C (1994) Preparation and characterization of an hydrate of kaolinite. Clay Clay Miner 42:473–476

    CAS  Google Scholar 

  37. Tunney JJ, Detellier C (1996) Chemically modified kaolinite. Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite. J Mater Chem 6:1679–1685

    CAS  Google Scholar 

  38. Tunney JJ, Detellier (1994) Preparation and characterization of two distinct ethylene glycol derivatives of kaolinite. Clay Clay Miner 42:552–560

    CAS  Google Scholar 

  39. Letaief S, Tonle IK, Diaco T, Detellier C (2008) Nanohybrid materials from interlayer functionalization of kaolin: application to the electrochemical preconcentration of cyanide. Appl Clay Sci 42:95–101

    CAS  Google Scholar 

  40. Letaief S, Tonle IK, Diaco T, Detellier C (2011) Application of thermal analysis for the characterisation of intercalated and grafted organo-kaolinite nanohybrid materials. J Thermal Anal Calorim 104(3):831–839

    CAS  Google Scholar 

  41. Kenne-Dedzo G, Detellier C (2013) Ionic liquid–kaolinite nanohybrid materials for the amperometric detection of trace levels of iodide. Analyst 138:767–770

    Google Scholar 

  42. Lahav M, Shanai U, Shabtai J (1978) Cross-linked smectites, I. Synthesis and properties of hydroxy-aluminum-montmorillonite. Clay Clay Miner 26:107–115

    CAS  Google Scholar 

  43. Brindley GW, Yamanaka S (1979) A study of hydroxychromium montmorillonites and the form of the hydroxy-chromium polymers. Am Miner 64:830–835

    CAS  Google Scholar 

  44. Sempels RE (1977) Preparation and properties of some hydroxyaluminium beidellites. Clay Miner 12:229–236

    Google Scholar 

  45. Thomas SM, Occelli ML (2000) Effects of synthesis conditions on the thermal stability of a Texas montmorillonite expanded with [Al13O4(OH)24(H2O)12]7+ cations. Clay Clay Miner 48:304–308

    CAS  Google Scholar 

  46. Occelu ML, Tindwa PM (1983) Physicochemical properties of montmorillonite interlayered with cationic oxyaluminium pillars. Clay Clay Miner 31:22–28

    Google Scholar 

  47. Cool P, Vansant E (1998) Pillared clays: preparation, characterization and applications In: Synthesis, Springer-Verlag, Berlin Heidelberg, pp. 265–288

  48. Perez A, Montes M, Molina R, Moreno S (2014) Modified clays as catalysts for the catalytic oxidation of ethanol. Appl Clay Sci 95:18–24

    CAS  Google Scholar 

  49. Nakatsuji M, Ishii R, Ming-Wang Z, Ooi K (2004) Preparation of porous clay minerals with organic–inorganic hybrid pillars using solvent-extraction route. J Colloid Interf Sci 272:158–166

    CAS  Google Scholar 

  50. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, Hoboken, p 253

    Google Scholar 

  51. Zhu L, Tian S, Zhu J, Shi Y (2007) Silylated pillared clay (SPILC): a novel bentonite-based inorgano-organo composite sorbent synthesized by integration of pillaring and silylation. J Colloid Interf Sci 315(1):191–199

    CAS  Google Scholar 

  52. Reddaiah K, Madhusudana RT, Subba RY, Raghu P, Gopala P (2014) Development of electrochemical sensor based on β-cyclodextrin/K10 montmorillonite towards the enhanced electro-catalytic oxidation of isoorientin: a voltammetric study. Mater Sci Eng B 183:69–77

    CAS  Google Scholar 

  53. Laachachi A, Leroy E, Cochez M, Ferriol M, Lopez-Cuesta JM (2005) Polym Degrad Stab 89(2):344–352

    CAS  Google Scholar 

  54. Weickmann H, Tiller JC, Thomann R, Mulhaupt R (2005) Metallized organoclays as new intermediates for aqueous nanohybrid dispersions, nanohybrid catalysts and antimicrobial polymer hybrid nanocomposites. Macromol Mater Eng 290:875–883

    CAS  Google Scholar 

  55. Ianchis R, Corobea MC, Donescu D, Rosca ID, Cinteza LO, Nistor LC, Vasile E, Marin A, Preda S (2012) Advanced functionalization of organoclay nanoparticles by silylation and their polystyrene nanocomposites obtained by miniemulsion polymerization. J Nanopart Res 14:1233–1245

    Google Scholar 

  56. Madejova J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10

    CAS  Google Scholar 

  57. Velde B (1992) Introduction to clay minerals: chemistry, origins, uses and environmental significance. Chapman & Hall, London, pp 20–23

    Google Scholar 

  58. Colthup NB, Daly LH, Wiberley SE (1975) Introduction to infrared and Raman spectroscopy, 2nd edn. Academic, New York

    Google Scholar 

  59. Olson CG, Thompson ML (2000) Phyllosilicates. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp F77–F119

    Google Scholar 

  60. Xi Y, Ding Z, He H, Frost R (2005) Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide. Spectrochim Acta Part A Mol Biomol Spectrosc 61(3):515–525

    Google Scholar 

  61. 61 Moore DM, Reynolds RC Jr (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals (2nd edn) Chap 7 227–259. ISBN: 9780195087130

  62. Lewis DW, McConchie D (1994) Analytical sedimentology. Champman & Hall, London, pp 144–145

    Google Scholar 

  63. Philip RR, Brian GL (1994) Two-dimensional X-ray diffraction and scattering of microcrystalline and polymeric materials. Spectroscopy 9(6):22–33

    Google Scholar 

  64. Churchman GJ, Gates WP, Theng BKG, Yuan G (2006) Clays and clay minerals for pollution control. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments in clay science, vol 1. Elsevier, Amsterdam, pp 625–667

    Google Scholar 

  65. Brindley GW, Zalba PE, Bethke CM (1983) Hydrobiotite, a regular 1:1 interstratification of biotite and vermiculite layers. Am Mineral 68:420–425

    CAS  Google Scholar 

  66. Yariv S (2004) The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl Clay Sci 24:225–236

    CAS  Google Scholar 

  67. Hill JO (1991) For Better Thermal Analysis and Calorimetry (3rd edition) International Confederation for Thermal Analysis, Bundoora, Australia

  68. Yariv S (1996) Thermo-IR-Spectroscopy analysis of interactions between organic pollutants and clay minerals. Thermochim Acta 274:1–35

    CAS  Google Scholar 

  69. Yariv S (2001) IR spectroscopy and thermo-IR-spectroscopy in the study of the fine structure of organoclay complexes. In: Yariv S, Cross H (eds) Organo-clay complexes and inter-actions. Marcel Dekker, New York, pp 463–566

    Google Scholar 

  70. Yermiyahu Z, Lapides I, Yariv S (2002) Thermo-XRD analysis of the adsorption of congo-red by montmorillonite saturated with different cations. J Therm Anal Calorim 69:317–332

    CAS  Google Scholar 

  71. Talja RA, Roos YH (2001) Phase and state transition effects on dielectric, mechanical and thermal properties of polyols. Thermochim Acta 380:109–121

    CAS  Google Scholar 

  72. Balek V, Malek Z, Ehrlicher U, Gyoryova K, Matuschek G, Yariv S (2002) Emanation thermal analysis of Tixoton (activated bentonite) treated with organic compounds. Appl Clay Sci 21:295–302

    CAS  Google Scholar 

  73. Rodrigues T, Tavares MIB, Soares I, Moreira A, Ferreira A (2009) The use of solid state NMR to characterize high density polyethylene/organoclay nanocomposites. Chem Chem Technol 3(3):187–190

    Google Scholar 

  74. He HP, Duchet J, Galy J, Gerard J (2005) Grafting of swelling clay minerals with 3-aminopropyltrithoxysilane. J Colloid Interf Sci 288:171–176

    CAS  Google Scholar 

  75. Shen W, He HP, Zhu JX, Yuan P, Frost RL (2007) Grafting of montmorillonite with different functional silanes via two different reaction systems. J Colloid Interf Sci 313:268–273

    CAS  Google Scholar 

  76. Lippmaa E, Maegi M, Samoson A, Engelhardt G, Grimmer AR (1980) Structural studies of silicates by solid-state high-resolution silicon-29 NMR. J Am Chem Soc 102:4889–4893

    CAS  Google Scholar 

  77. Tonle IK, Diaco T, Ngameni E, Detellier C (2007) Nanohybrid kaolinite-based materials obtained from the interlayer grafting of 3-aminopropyltriethoxysilane and their potential use as electrochemical sensors. Chem Mater 19:6629–6636

    CAS  Google Scholar 

  78. Guerraa DL, Silva EM, Airoldi C (2010) Application of modified attapulgites as adsorbents for uranyl uptake from aqueous solution-Thermodynamic approach. Proc Safety Environ Protect 88:53–61

    Google Scholar 

  79. Tonle IK, Letaief S, Ngameni E, Detellier C (2009) Nanohybrid materials from the grafting of imidazolium cations on the interlayer surfaces of kaolinite: application as electrode modifier. J Mater Chem 19:5996–6003

    CAS  Google Scholar 

  80. Sing K (2001) The use of nitrogen adsorption for the characterization of porous materials. Colloids Surf A 187–188:3–9

    Google Scholar 

  81. de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuval A, Osinga TJ (1966) The t-curve of multimolecular N2-adsorption. J Colloid Interf Sci 21:405–414

    Google Scholar 

  82. de Jong E (1999) Comparison of three methods of measuring surface area of soils. Can J Soil Sci 79:345–351

    Google Scholar 

  83. Hepper EN, Buschiazzo DE, Hevia GC, Urioste A, Antón L (2006) Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents. Geoderma 135:216–223

    CAS  Google Scholar 

  84. Toth JGT, Szendrei G (2006) Surface and micropore properties of saline soil profiles. Geoderma 135:1–15

    Google Scholar 

  85. Benton AF, White TA (1932) The sorption of gas by iron. J Am Chem Soc 54:1820–1830

    CAS  Google Scholar 

  86. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295

    CAS  Google Scholar 

  87. Brunauer S, Emmett PH (1937) The use of low temperature van der Waals adsorption isotherms in determining the surface areas of various adsorbents. J Am Chem Soc 59:2682–2689

    CAS  Google Scholar 

  88. Shull CG (1948) Physical studies of gel microstructure. J Am Chem Soc 70:1410–1414

    CAS  Google Scholar 

  89. Barrett EP, Joyner LG, Halenda PH (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    CAS  Google Scholar 

  90. Fadeeva VP, Tikhova VD, Nikulichevaref ON (2008) Elemental analysis of organic compounds with the use of automated CHNS analyzers. J Anal Chem 63(11):1094–1106

    CAS  Google Scholar 

  91. Al-Najafi S, Wellington CA, Wade AP, Sly TJ, Betteridge D (1987) Computer-assisted optimization of HPLC with post-column reaction for the determination of amino-acids. Talanta 34:749–756

    CAS  Google Scholar 

  92. Spiro M (1960) Determination of transference numbers. In: Weissberger A (ed) Technique of organic chemistry, vol. 1, physical methods of organic chemistry, 3rd edn. Interscience Publishers Inc, New York

    Google Scholar 

  93. Tonle IK, Letaief S, Ngameni E, Walcarius A, Detellier C (2011) Square wave voltammetric determination of lead(II) ions using a carbon paste electrode modified by a thiol-functionalized kaolinite. Electroanalysis 23:245–252

    CAS  Google Scholar 

  94. Goldstein J, Newbury D, Joy D, Lyman C, Echlin P, Lifshin E, Sawyer L, Michael J (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  95. Zhou W, Apkarian RP, Lin-Wang Z, Joy D (2006) Fundamentals of Scanning Electron Microscopy In: Lin-Wang Z, Zhou W (eds.), Scanning Microscopy for Nanotechnology-Techniques and Applications, Springer,pp 1–39

  96. Thompson DW, Macmillan JJ, Wyatt DA (1981) Electron microscope studies of the surface microstructures of layer-lattice silicates. J Colloid Interf Sci 82:362–372

    CAS  Google Scholar 

  97. Lee SY, Kim SJ (2002) Transmission electron microscopy of hexadecyltrimethylammonium-exchanged smectite. Clay Miner 37:465–471

    CAS  Google Scholar 

  98. El Messabeb-Ouali A, Benna-Zayani M, Ayadi-Trabelsi M, Sauvé S (2013) Morphology, structure, thermal stability, XR-diffraction, and infrared study of hexadecyltrimethylammonium bromide–modified smectite. Inter J Chem 5(2):12–28

    Google Scholar 

  99. Bauluz B, Peacor DR, Ylagan RF (2002) Transmission electron microscopy study of smectite illitization during hydrothermal alteration of a rhyolitic hyaloclastite from Ponza, Italy. Clay Clay Miner 50:157–173

    CAS  Google Scholar 

  100. Hoffman B, Dietricha C, Thomann R, Friedrich C, MuLhaupt R (2000) Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromol Rapid Comm 21(1):57–61

    Google Scholar 

  101. Zhou Q, Xi Y, He H, Frost RL (2008) Application of near infrared spectroscopy for the determination of adsorbed p-nitrophenol on HDTMA organoclay-implications for the removal of organic pollutants from water. Spectrochim Acta A 69(3):835–841

    Google Scholar 

  102. He H, Frost RL, Bostrom T, Yuan P, Duong I, Yang D, Xi Y, Kloprogge JT (2006) Changes in the morphology of organoclays with HDTMA+ surfactant loading. Appl Clay Sci 31:262–271

    CAS  Google Scholar 

  103. Adams RN (1958) Carbon paste electrodes. Anal Chem 30:1576–1576

    CAS  Google Scholar 

  104. Kalcher K (1990) Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2:419–433

    CAS  Google Scholar 

  105. Li G, Wan C, Ji Z, Wu K (2007) An electrochemical sensor for Cd2+ based on the inducing adsorption ability of I. Sens Actuators B Chem 124:1–5

    CAS  Google Scholar 

  106. Svancara I, Hvizdalova M, Vytras K, Kalcher K, Novotny R (1996) A microscopic study on carbon paste electrodes. Electroanalysis 8:61–65

    CAS  Google Scholar 

  107. Wang J, Anik-Kirgçz U, Mo JW, Lu J, Kawde AN, Muck A (2001) Glassy carbon paste electrodes. Electrochem Commun 3:203–208

    CAS  Google Scholar 

  108. Stefan RI, Bairu SG (2003) Monocrystalline diamond paste-based electrodes and their applications for the determination of Fe(II) in vitamins. Anal Chem 75:5394–5398

    CAS  Google Scholar 

  109. Figueiredo-Filho LCS, Brownson DAC, Fatibello-Filho O, Banks CE (2014) Electroanalytical performance of a freestanding three-dimensional graphene foam electrode. Electroanalysis 26:93–102

    CAS  Google Scholar 

  110. Zarbin AJG (2007) Chemistry of nanomaterials. Quim Nova 30:1469–1479

    CAS  Google Scholar 

  111. Miranda-Hernandez M, Rincon ME, Gonzalez I (2005) Characterization of carbon–fullerene–silicone oil composite paste electrodes. Carbon 43:1961–1967

    CAS  Google Scholar 

  112. Ricci F, Amine A, Moscone D, Palleschi G (2003) Prussian blue modified carbon nanotube paste electrodes: a comparative study and a biochemical application. Anal Lett 36:1921–1938

    CAS  Google Scholar 

  113. Antiochia R, Lavagnini I, Magno F, Valentini F, Palleschi G (2004) Single-wall carbon nanotube paste electrodes: a comparison with carbon paste, platinum and glassy carbon electrodes via cyclic voltammetric data. Electroanalysis 16:1451–1458

    CAS  Google Scholar 

  114. Lawrence NS, Deo RP, Wang J (2004) Detection of homocysteine at carbon nanotube paste electrodes. Talanta 63:443–449

    CAS  Google Scholar 

  115. Rubianes MAD, Rivas GA (2005) Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanalysis 17:73–78

    CAS  Google Scholar 

  116. Svegl IG, Ogorevc B (2000) Soil modified carbon paste electrode: a useful tool in environmental assessment of heavy metal ion binding interactions. Fresenius J Anal Chem 367:701–706

    CAS  Google Scholar 

  117. Svancara I, Vytras K, Kalcher K, Walcarius A, Wang J (2009) Carbon paste electrode in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21(1):7–28

    CAS  Google Scholar 

  118. Vytras K, Svancara I, Metelka R (2009) Carbon paste electrodes in electroanalytical chemistry. J Serb Chem Soc 74(10):1021–1033

    CAS  Google Scholar 

  119. Wang J, Cai X-H, Wang J-Y, Jonsson C, Palecek E (1995) Trace measurements of RNA by potentiometric stripping analysis at carbon paste electrodes. Anal Chem 67:4065–4070

    CAS  Google Scholar 

  120. Gonzalez-Garcia MB, Costa-Garcia A (2001) Silver electrodeposition catalyzed by colloidal gold on carbon paste electrode: application to biotin–streptavidin interaction monitoring. Biosens Bioelectron 15:663–670

    Google Scholar 

  121. Kizek R, Masarik M, Kramer KJ, Potesill D, Bailey M, Howard JA, Klejdus B, Mikelova R, Adam V, Trnkova L, Jelen F (2005) An analysis of avidin, biotin and their interaction at attomole levels by voltammetric and chromatographic techniques. Anal Bioanal Chem 381:1167–1178

    CAS  Google Scholar 

  122. Jenkins SH, Heineman WR, Halsall HB (1988) Extending the detection limit of solid-phase electrochemical enzyme immunoassay to the attomole level. Anal Biochem 168:292–299

    CAS  Google Scholar 

  123. Zen JM, Kumar AS, Tsai DM (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15(13):1073–1087

    CAS  Google Scholar 

  124. Ghosh PK, Bard AJ (1983) Clay modified electrodes. J Am Chem Soc 105:5691–5693

    CAS  Google Scholar 

  125. Naegeli R, Redepenning J, Anson FC (1986) Influence of supporting electrolyte concentration and composition on formal potentials and entropies of redox couples incorporated in nafion coatings on electrodes. J Phys Chem 90:6227–6232

    CAS  Google Scholar 

  126. Subramanian P, Fitch A (1992) Diffusional transport of solutes through clay: use of clay modified electrodes. Environ Sci Technol 26(9):1775–1779

    CAS  Google Scholar 

  127. Fitch A, Song J, Stein J (1996) Molecular structure effects on diffusion of cations in clays. Clay Clay Miner 44(3):370–380

    CAS  Google Scholar 

  128. Premkumar J, Ramaraj R (1997) Electrocatalytic reduction of dioxygen at platinum particles deposited on Nafion and clay coated electrodes. J Solid State Electrochem 1:172–179

    CAS  Google Scholar 

  129. Moronta A (2004) Catalytic and adsorption properties of modified clay surfaces. Interf Sci Technol 1:321–344

    CAS  Google Scholar 

  130. Tcheumi HL, Tonle IK, Ngameni E, Walcarius A (2010) Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode. Talanta 81:972–979

    CAS  Google Scholar 

  131. Tchinda AJ, Ngameni E, Walcarius A (2007) Thiol-functionalized porous clay heterostructures (PCHs) deposited as thin films on carbon electrode: towards mercury(II) sensing. Sens Actuators B Chem 121:113–123

    CAS  Google Scholar 

  132. Tchinda AJ, Ngameni E, Tonle IK, Walcarius A (2009) One-step preparation of thiol-functionalized porous clay heterostructures: application to Hg(II) binding and characterization of mass transport issues. Chem Mater 21:4111–4121

    CAS  Google Scholar 

  133. Wagheu JK, Forano C, Besse-Hoggan P, Tonle IK, Ngameni E, Mousty C (2013) Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes. Talanta 103:337–343

    Google Scholar 

  134. Paramasivam M, Anandhan G (2005) Electrocatalytic reduction of dioxygen on 9,10-anthraquinones-incorporated clay-modified glassy carbon electrodes. Bull Chem Soc Japan 78:1783–1790

    Google Scholar 

  135. Coche-Guerente L, Deprez V, Labbe P (1998) Characterization of organosilasesquioxane-intercalated-laponite-clay modified electrodes and (bio)electrochemical applications. J Electroanal Chem 458:73–86

    CAS  Google Scholar 

  136. Mbouguen JK, Ngameni E, Walcarius A (2007) Quaternary ammonium functionalized clay film electrodes modified with polyphenols oxydase for the sensitive detection of catechol. Biosens Bioelectron 23:269–275

    CAS  Google Scholar 

  137. Navratilova Z, Kula P (2003) Clay modified electrodes: present applications and prospects. Electroanalysis 15(10):837–846

    CAS  Google Scholar 

  138. Rong D, Kim YI, Mallouk TE (1990) Electrochemistry and photoelectrochemistry of pillared clay modified-electrodes. Inorg Chem 29:1531–1535

    CAS  Google Scholar 

  139. Zen JM, Wang HF, Kumar AS, Yang HH, Dharuman V (2002) Preconcentration and electroanalysis of copper(II) in ammoniacal medium on nontronite/cellulose acetate modified electrodes. Electroanalysis 14(2):99–105

    CAS  Google Scholar 

  140. Zen JM, Jeng SH, Chen HJ (1996) Determination of paraquat by square wave voltammetry at a persulfonated ionomer/Clay modified electrode. Anal Chem 68:498–502

    CAS  Google Scholar 

  141. Hotta Y, Inukai K, Taniguchi M, Yamagishi A (1997) Electrochemical behavior of hexaammineruthenium (III) cations in clay-modified-electrodes prepared by the Langmuir-Blodgett method. J Electroanal Chem 429:107–114

    CAS  Google Scholar 

  142. Okamoto K, Tamura K, Takahashi M, Yamagishi A (2000) Preparation of a clay-metal complex hybrid film by the Langmuir-Blodgett method and its application as an electrode modifier. Colloids Surf A 169:241–249

    CAS  Google Scholar 

  143. He J, Kobayashi K, Takahashi M, Villemure G, Yamagishi A (2001) Preparation of hybrid films of an anionic Ru(II) cyanide polypytidyl complex with layered double hydroxides by the Langmuir-Blodgett method and their use as electrode modifiers. Thin Solid Films 397:255–265

    CAS  Google Scholar 

  144. Maghear A, Etienne M, Tertiş M, Sandulescu R, Walcarius A (2013) Clay-mesoporous silica composite films generated by electro-assisted self-assembly. Electrochim Acta 112:333–341

    CAS  Google Scholar 

  145. Azad UP, Turllapati S, Rastogi PK, Ganesan V (2014) Tris(1,10-phenanthroline) iron(II)-bentonite film as efficient electrochemical sensing platform for nitrite determination. Electrochim Acta 127:193–199

    CAS  Google Scholar 

  146. Gulaboski M, Pereira CM (2008) Electroanalytical techniques and instrumentation in food analysis In: Ottles S (ed.) Handbook of food analysis instruments, Taylor & Francis, pp. 379–402

  147. Wang J (2006) Controlled-potential techniques In: Analytical electrochemistry, 3rd Edition, John Wiley & Sons, New Jersey, pp. 67–114

  148. Zoski CG (2007) Electrochemical methods In: Handbook of electrochemistry, 1st Edition, Elsevier, Amsterdam, pp. 836–848

  149. Tonle IK, Ngameni E, Walcarius A (2004) From clay- to organoclay-film modified electrodes: tuning charge selectivity in ion exchange voltammetry. Electrochim Acta 49:3435–3443

    CAS  Google Scholar 

  150. Navratilova Z, Kula P (2000) Determination of gold using clay modified carbon paste electrode. Fresenius J Anal Chem 367:369–372

    CAS  Google Scholar 

  151. Hotta Y, Inukai K, Taniguchi M, Yamagishi A (1997) Electrochemical behavior of hexa-ammineruthenium (III) cations in clay-modified-electrodes prepared by the Langmuir-Blodgett method. J Electroanal Chem 429

  152. Barker GC, Jenkin IL (1952) Square wave polarography. Analyst 77(920):685–696

    CAS  Google Scholar 

  153. Wang J (2006) Controlled-potential techniques In: Analytical electrochemistry, 3rd Edition, John Wiley & Sons, New Jersey, pp. 67–114

  154. Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hothd M (2013) Square-wave voltammetry: a review on the recent progress. Electroanalysis 25(11):2411–2422

    CAS  Google Scholar 

  155. Eccles GN (1991) Recent advances in pulse cyclic and square-wave cyclic voltammetric analysis. Crit Rev Anal Chem 22:345–380

    CAS  Google Scholar 

  156. Lovric M (2002) Square-wave voltammetry. In: Scholz F (ed) Electroanalytical methods. Springer, Berlin, pp 121–145

    Google Scholar 

  157. Princeton Applied Research, 801 S. Illinois Avenue, Oak Ridge, TN 37830, Web: www.princetonappliedresearch.com. Accessed on 10 November 2014.

  158. Sin-Rhu L, Qiang-sheng F (1982) Determination of chemical reaction rate constants preceding or following electron transfer by mechanical square wave polarography. Anal Chem 54:1362–1367

    Google Scholar 

  159. Bagotsky VS (2005) Fundamentals of electrochemistry, 2nd edn. Wiley, New Jersey

    Google Scholar 

  160. Skoog DA, West DM, Holler FJ (1997) Les méthodes voltampérométriques In: De Boeck (ed.), Chimie Analytique, 7ème Edition, De Boeck & Larcier, Paris/Bruxelles, pp. 460–496

  161. Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143:587–599

    CAS  Google Scholar 

  162. Sekar N, Ramasamy RP (2013) Electrochemical impedance spectroscopy for microbial fuel cell characterization. J Microbiol Biochem Technol S6:004 (pp 14)

    Google Scholar 

  163. Ivers-Tiffée E, Weber A, Schichlein H (2003) Electrochemical Impedance Spectroscopy. In: Handbook of Fuel Cells, Vol. 2, John Wiley & Sons

  164. Maghear A, Tertis M, Fritea L, MarianIO IE, Walcarius A, Sandulescu R (2014) Tetrabutylammonium-modified clay film electrodes: characterization and application to the detection of metal ions. Talanta 125:36–44

    CAS  Google Scholar 

  165. Safavi A, Maleki N, Tajabadi F (2007) Highly stable electrochemical oxidation of phenolic compounds at carbon ionic liquid electrode. Analyst 132:54–58

    CAS  Google Scholar 

  166. Bankovic P, Mojovic Z, Milutinovic-Nikolic A, Jovic-Jovicic N, Marinovic S, Jovanovic D (2010) Mixed pillared bentonite for electrooxidation of phenol. Appl Clay Sci 49:84–89

    CAS  Google Scholar 

  167. Senturk HB, Ozdes D, Gundogdu A, Duran C, Soylak M (2009) Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. J Hazard Mater 172(1):353–362

    CAS  Google Scholar 

  168. Özbudak YS, Lopes VA (2005) Effect of adsorbent of concentration to the adsorption of phenol on hexadecyl trimethyl ammonium–bentonite. J Hazard Mater 121:135–139

    Google Scholar 

  169. Yilmaz N, Yapar S (2004) Adsorption properties of tetradecyl- and hexadecyl trimethylammonium bentonites. Appl Clay Sci 27:223–228

    CAS  Google Scholar 

  170. Akçay M (2004) Characterization and determination of the thermodynamic and kinetic properties of p-CP adsorption onto organophilic bentonite from aqueous solution. J Colloid Interface Sci 280:299–304

    Google Scholar 

  171. Zunic MJ, Milutinovic-Nikolic AD, Stankovic DM, Manojlovic DD, Jovic-Jovicic NP, Mojovic ZD, Bankovic PT, Jovanovic DM (2014) Electrooxidation of p-nitrophenol using a composite organo-smectite clay glassy carbon electrode. Appl Surf Sci 313:440–448

    CAS  Google Scholar 

  172. Rabi-Stankovic AA, Mojovic Z, Milutinovic-Nikolic A, Jovic-Jovicic N, Bankovic P, Zunic M, Jovanovic D (2013) Electrooxidation of p-nitrophenol on organobentonite modified electrodes. Appl Clay Sci 77–78:61–67

    Google Scholar 

  173. Mojovic Z, Jovic-Jovicic N, Bankovic P, Zunic M, Rabi-Stankovic AA, Milutinovic-Nikolic A, Jovanovic D (2011) Electrooxidation of phenol on different organo bentonite-based electrodes. Appl Clay Sci 53:331–335

    CAS  Google Scholar 

  174. Rabi-Stankovic AA, Milutinovic-Nikolic A, Jovic-Jovicic N, Bankovic P, Zunic M, Mojovic Z, Jovanovic D (2012) p-Nitrophenol electro-oxidation on a BTM+-bentonite modified electrode. Clay Clay Miner 60(3):291–299

    Google Scholar 

  175. Yang H, Zheng X, Huang W, Wu K (2008) Modification of montmorillonite with cationic surfactant and application in electrochemical determination of 4-chlorophenol. Coll Surf B Biointerf 65:281–284

    CAS  Google Scholar 

  176. Zhou D, Liu X, Zheng X (2009) Electrochemical determination of phenol using CTAB‐functionalized montmorillonite electrode. Environ Technol 30(7):701–706

    Google Scholar 

  177. Wang Z, Kong Y, Yao C, Wang Y, Ding X, Zhou Y (2012) A sensitive o-aminophenol sensor based on a modified montmorillonite-modified expanded graphite electrode. Appl Clay Sci 55:173–176

    Google Scholar 

  178. Kong Y, Ma M, Mao H, MaJ YC (2012) A novel amperometric sensor based on intercalated montmorillonite modified carbon paste electrode for hydroquinone determination. Anal Methods 4:748–752

    CAS  Google Scholar 

  179. Kong Y, Xu Y, Mao H, Yao C, Ding X (2012) Expanded graphite modified with intercalated montmorillonite for the electrochemical determination of catechol. J Electroanal Chem 669:1–5

    CAS  Google Scholar 

  180. Castro R, Moyano E, Galceran MT (2000) On-line ion-pair solid-phase extraction liquid chromatography-mass spectrometry for the analysis of quaternary ammonium pesticides. J Chromatol 869:441–449

    CAS  Google Scholar 

  181. De Souza D, Machado SA, Pires RC (2006) Multiple square wave voltammetry for analytical determination of paraquat in natural water, food, and beverages using microelectrodes. Talanta 69:1200–1207

    Google Scholar 

  182. Tonle IK, Ngameni E (2011) Voltammetric analysis of pesticides, In: Pesticides in the Modern World/Book3, Eds. InTech,ISBN: 978-953-307-184-8, Vienna, Austria, 465–488

  183. Tonle IK, Ngameni E, Tcheumi HL, Tchiéda V, Carteret C, Walcarius A (2008) Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye. Talanta 74:489–497

  184. Mbouguen JCK, Tonle IK, Walcarius AE (2011) Electrochemical response of ascorbic and uric acids at organoclay film modified glassy carbon electrodes and sensing applications. Talanta 85:754–762

  185. Kenne-Dedzo G, Detellier C (2014) Intercalation of two phenolic acids in an ionic liquid–kaolinite nanohybrid material and desorption studies. Appl Clay Sci 97–98:153–159

    Google Scholar 

  186. Hu S, Xu C, Wang G, Cui D (2001) Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54:115–123

    CAS  Google Scholar 

  187. Kamgaing T, Tonle IK, Emanbou YF (2013) Electrochemical analysis of hydroquinone using glassy carbon electrode coated with a clay film amended by L-cysteine. Eur J Anal Chem 8:64–77

  188. Chen H, Zhang Z, Cai D, Zhang S, Zhang B, Tang J, Wu Z (2012) Attapulgite with poly(methylene blue) composite film electrocatalytic determination of ascorbic acid. Solid State Sci 14:362–366

    CAS  Google Scholar 

  189. Manisankar P, Selvanathan G, Vedhi C (2006) Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 68:686–692

    CAS  Google Scholar 

  190. Ozkan D, Kerman K, Meric B, Kara P, Demirkan H, Polverejan M, Pinnavaia TJ, Ozsoz M (2002) Heterostructured fluorohectorite clay as an electrochemical sensor for the detection of 2,4-Dichlorophenol and the Herbicide 2,4-D. Chem Mater 14:1755–1761

    CAS  Google Scholar 

  191. Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque- Filho MR, Campos LS (2005) Heavy metals contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:85–194

    Google Scholar 

  192. Pujol P, Evrard D, Groenen-Serrano K, Freyssinier M, Ruffien-Cizsak A, Gros P (2014) Electrochemical sensors and devices for heavy metals assay in water: the French groups’ contribution. Front Chem 2:24. doi:10.3389/fchem

    Google Scholar 

  193. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Google Scholar 

  194. Filho NLD, Okajima GL, Pires G, Costa RM, do Carmo DR, Rosa AH (2008) Voltammetry of mercury(II) based on an organo-clay modified graphite electrode. Port Electrochim Acta 26:163–179

    Google Scholar 

  195. Filho NLD, do Carmo DR, Rosa AH (2006) Selective sorption of mercury(II) from aqueous solution with an organically modified clay and its electroanalytical application. Separ Sci Technol 41(4):733–746

    CAS  Google Scholar 

  196. Filho NLD, do Carmo DR (2006) Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determination of mercury(II). Talanta 68:919–927

    Google Scholar 

  197. Colilla M, Darder M, Aranda P, Ruiz-Hitzky E (2005) Amperometric sensors based on mercaptopyridine-montmorillonite intercalation compounds. Chem Mater 17:708–715

    CAS  Google Scholar 

  198. Bouwe RGB, Tonle IK, Letaief S, Ngameni E, Detellier C (2011) Structural characterisation of 1,10-phenanthroline–montmorillonite intercalation compounds and their application as low-cost electrochemical sensors for Pb(II) detection at the sub-nanomolar level. Appl Clay Sci 52:258–265

  199. Dong YP, Ding Y, Zhou Y, Chen J, Wang CM (2014) Differential pulse anodic stripping voltammetric determination of Pb ion at a montmorillonites/polyaniline nanocomposite modified glassy carbon electrode. J Electroanal Chem 717–718:206–212

    Google Scholar 

  200. Tonle IK, Ngameni E, Walcarius A (2005) Preconcentration and voltammetric analysis of mercury(II) at a carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sens Actuat B Chem 110:195–203

    CAS  Google Scholar 

  201. Sayen S, Walcarius A (2003) Electro-assisted generation of functionalized silica films on gold. Electrochem Commun 5:341–348

    CAS  Google Scholar 

  202. Sibottier S, Sayen S, Gaboriaud F, Walcarius A (2006) Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups. Langmuir 22:8366–8373

    CAS  Google Scholar 

  203. Walcarius A (2001) Electroanalysis with pure, chemically modified and sol-gelderived silica-based materials. Electroanalysis 13:701–718

    CAS  Google Scholar 

  204. Walcarius A, Mandler D, Cox J, Collinson MM, Lev O (2005) Exciting new directions in the intersection of functionalized sol–gel materials with electrochemistry. J Mater Chem 15:3663–3689

    CAS  Google Scholar 

  205. Shacham R, Avnir D, Mandler D (1999) Electrodeposition of methylated sol–gel films on conducting surfaces. Adv Mater 11:384–388

    CAS  Google Scholar 

  206. Deepa PN, Kanungo M, Claycomb G, Sherwood PMA, Collinson MM (2003) Electrochemically deposited sol–gel-derived silicate films as a viable alternative in thin-film design. Anal Chem 75:5399

    CAS  Google Scholar 

  207. Yuan S, Chen W, Hu S (2004) Simultaneous determination of cadmium (II) and lead (II) with clay nanoparticles and anthraquinone complexly modified glassy carbon electrode. Talanta 64:922–928

    CAS  Google Scholar 

  208. Ngameni E, Tonle IK, Apohkeng JT, Bouwe RGB, Jieumboue AT, Walcarius A (2006) Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanalysis 18(22):2243–2250

    CAS  Google Scholar 

  209. Darder M, Colilla M, Ruiz-Hitzky E (2005) Chitosan–clay nanocomposites: application as electrochemical sensors. Appl Clay Sci 28:199–208

    CAS  Google Scholar 

  210. Zhang S, He P, Lei W, Zhang G (2014) Novel attapulgite/polyaniline/phosphomolybdic acid-based modified electrode for the electrochemical determination of iodate. J Electroanal Chem 724:29–35

    CAS  Google Scholar 

  211. Azad UP, Turllapati S, Rastogi PK, Ganesan V (2014) Tris(1,10-phenanthroline)iron(II)-bentonite film as efficient electrochemical sensing platform for nitrite determination. Electrochim Acta 127:193–199

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt Foundation (Germany). The joint donation by the International Union of Crystallography (UICr) and Bruker AXS SAS (France) of a powdered X-Ray diffractometer (Siemens D5005) to the University of Dschang is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignas K. Tonle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonle, I.K., Ngameni, E., Tchieno, F.M.M. et al. Organoclay-modified electrodes: preparation, characterization and recent electroanalytical applications. J Solid State Electrochem 19, 1949–1973 (2015). https://doi.org/10.1007/s10008-014-2728-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2728-0

Keywords

Navigation