Skip to main content
Log in

A comparative study of different types of reduced graphene oxides as electrochemical sensing platforms for hydroquinone and catechol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We compared the electrochemical performance of various reduced graphene oxides (RGOs), including chemically reduced graphene oxide (CRGO), thermally reduced graphene oxide (TRGO), and electrochemically reduced graphene oxide (ERGO) under different reduction potentials, using aromatic species of hydroquinone and catechol as analytes. Strong adsorption of analytes on RGOs surface is found due to π-π interaction between RGOs and aromatic species. Analytical parameters of electron transfer rate, detection sensitivity, and linear response range were considered. CRGO showed the fastest heterogeneous electron transfer rate and the most wide linear range but among the poorest detection sensitivity. The different restoration extent of graphitic network, such as ERGO prepared under different reduction potentials, will also affect the sensing performance. These results will enhance our understanding of the applicability of RGOs in biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang C, Yuan R, Chai Y, Hu F (2012) Anal Methods 4:1626–1628

    Article  CAS  Google Scholar 

  2. Li SJ, Qian C, Wang K, Hua BY, Wang FB, Sheng ZH, Xia XH (2012) Sens Actuators B chem 174:441–448

    Article  CAS  Google Scholar 

  3. Mayorga-Martinez CC, Cadevall M, Guix M, Ros J, Merkoci A (2013) Biosens Bioelectron 40:57–62

    Article  CAS  Google Scholar 

  4. Asan A, Isildak I (2003) J Chromatogr A 988:145–149

    Article  CAS  Google Scholar 

  5. Li SF, Li XZ, Xu J, Wei XW (2008) Talanta 75:32–37

    Article  CAS  Google Scholar 

  6. Moldoveanu SC, Kiser M (2007) J Chromatogr A 1141:90–97

    Article  CAS  Google Scholar 

  7. Dong S, Chi L, Yang Z, He P, Wang Q, Fang Y (2009) J Sep Sci 32:3232–3238

    Article  CAS  Google Scholar 

  8. Wang ZH, Li SJ, Lv QZ (2007) Sens Actuators B chem 127:420–425

    Article  CAS  Google Scholar 

  9. Guo QH, Huang JS, Chen PQ, Liu Y, Hou HQ, You TY (2012) Sens Actuators B chem 163:179–185

    Article  CAS  Google Scholar 

  10. Bai J, Guo LP, Ndamanisha JC, Qi B (2009) J Appl Electrochem 39:2497–2503

    Article  CAS  Google Scholar 

  11. Zhang Y, Zheng JB (2007) Electrochim Acta 52:7210–7216

    Article  CAS  Google Scholar 

  12. Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q (2012) Electrochim Acta 85:295–301

    Article  CAS  Google Scholar 

  13. Li Z, Sun X, Xia Q, Li R, Fang Y, Yang S, Liu J (2012) Electrochim Acta 85:42–48

    Article  CAS  Google Scholar 

  14. Zheng L, Xiong L, Li Y, Xu J, Kang X, Zou Z, Yang S, Xia J (2013) Sens Actuators B chem 177:344–349

    Article  CAS  Google Scholar 

  15. Wang L, Zhang Y, Du Y, Lu D, Zhang Y, Wang C (2012) J Solid State Electrochem 16:1323–1331

    Article  CAS  Google Scholar 

  16. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  17. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  18. Sutter PW, Flege JI, Sutter EA (2008) Nat Mater 7:406–411

    Article  CAS  Google Scholar 

  19. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Nat Mater 8:203–207

    Article  CAS  Google Scholar 

  20. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) Nano Lett 7:3394–3398

    Article  CAS  Google Scholar 

  21. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110:8535–8539

    Article  CAS  Google Scholar 

  22. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  23. Wu JS, Pisul W, Mullen K (2007) Chem Rev 107:718–747

    Article  CAS  Google Scholar 

  24. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  25. Chee SY, Pumera M (2012) Electrochem Commun 20:141–144

    Article  CAS  Google Scholar 

  26. Stergiou DV, Diamanti EK, Gournis D, Prodromidis MI (2010) Electrochem Commun 12:1307–1309

    Article  CAS  Google Scholar 

  27. Punckt C, Pope MA, Liu J, Lin Y, Aksay IA (2010) Electroanalysis 22:2834–2841

    Article  CAS  Google Scholar 

  28. Yuan B, Zeng X, Xu C, Liu L, Ma Y, Zhang D, Fan Y (2013) Sens Actuators B chem 184:15–20

    Article  CAS  Google Scholar 

  29. Wang Z, Wu S, Zhang J, Chen P, Yang G, Zhou X, Zhang Q, Yan Q, Zhang H (2012) Nanoscale Res Lett 7:161–167

    Article  Google Scholar 

  30. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  31. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  32. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  33. Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  34. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  35. Li SJ, Xing Y, Wang GF (2012) Microchim Acta 176:163–168

    Article  CAS  Google Scholar 

  36. Deng DH, Li SJ, Zhang MJ, Liu XN, Zhao MM, Liu L (2013) Anal Methods 5:2536–2542

    Article  CAS  Google Scholar 

  37. Xiu N, Yang W, Wang G, Ren J, Guo H, Gao J (2013) Electrochim Acta 98:167–175

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from the National Natural Science Foundation of China (21105002), the Innovative project for Young Scholar sponsored by Henan province (14HASTIT012, 2013GGJS-147), Henan Key Technologies R&D Program (122102310516, 12B150002), and the Innovative Foundation for the College students of China (201310479012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Juan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SJ., Xing, Y., Deng, DH. et al. A comparative study of different types of reduced graphene oxides as electrochemical sensing platforms for hydroquinone and catechol. J Solid State Electrochem 19, 861–870 (2015). https://doi.org/10.1007/s10008-014-2692-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2692-8

Keywords

Navigation