Skip to main content
Log in

Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Simultaneous determination of catechol (CC) and hydroquinone (HQ) were investigated by voltammetry based on glassy carbon electrode (GCE) modified by poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G). The modified electrode showed excellent sensitivity and selectivity properties for the two dihydroxybenzene isomers. In 0.1 mol/L phosphate buffer solution (PBS, pH 7.0), the oxidation peak potential difference between CC and HQ was 108 mV, and the peaks on the PDDA-G/GCE were three times as high as the ones on graphene-modified glass carbon electrode. Under optimized conditions, the PDDA-G/GCE showed wide linear behaviors in the range of 1 × 10−6−4 × 10−4 mol/L for CC and 1 × 10−6−5 × 10−4 mol/L for HQ, with the detection limits 2.0 × 10−7 mol/L for CC and 2.5 × 10−7 mol/L for HQ (S/N = 3) in mixture, respectively. Some kinetic parameters, such as the electron transfer number (n), charge transfer coefficient (α), and the apparent heterogeneous electron transfer rate constant (k s), were calculated. The proposed method was applied to simultaneous determine CC and HQ in real water samples of Yellow River with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie T, Liu Q, Shi Y (2006) Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. J Chromatogr A 1109:317–321

    Article  CAS  Google Scholar 

  2. Cui H, He CX, Zhao GW (1999) Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. J Chromatogr A 855:171–179

    Article  CAS  Google Scholar 

  3. Asan A, Isildak I (2003) Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride. J Chromatogr A 988:145–149

    Article  CAS  Google Scholar 

  4. Pistonesi MF, Nezio MSD, Centurión ME, Palomeque ME, Lista AG, Band BSF (2006) Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69:1265–1268

    Article  CAS  Google Scholar 

  5. Cui H, Zhang QL, Myint A, Ge XW, Liu LJ (2006) Chemiluminescence of cerium(IV)–rhodamine 6 G–phenolic compound system. J Photochem Photobiol A: Chem 181:238–245

    Article  CAS  Google Scholar 

  6. Li SF, Li XZ, Xu J, Wei XW (2008) Flow-injection chemiluminescence determination of polyphenols using luminol–NaIO4–gold nanoparticles system. Talanta 75:32–37

    Article  CAS  Google Scholar 

  7. Nagaraja P, Vasantha RA, Sunitha KR (2001) A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta 55:1039–1046

    Article  CAS  Google Scholar 

  8. Moldoveanu SC, Kiser M (2007) Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. J Chromatogr A 1141:90–97

    Article  CAS  Google Scholar 

  9. Garcia-Mesa JA, Mateos R (2007) Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a ph-based flow-injection analysis system. J Agric Food Chem 55:3863–3868

    Article  CAS  Google Scholar 

  10. Ding Y, Liu W, Wu Q, Wang X (2005) Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J Electroanal Chem 575:275–280

    Article  CAS  Google Scholar 

  11. Kong Y, Chen X, Wang W, Chen Zh (2011) A novel palygorskite-modified carbon paste amperometric sensor for catechol determination. Anal Chim Acta 688:203–207

    Article  CAS  Google Scholar 

  12. Liu XY, Li YH, Liu XS, Zeng XD, Kong B, Luo SL, Wei WZ (2011) Simple sensor for simultaneous determination of dihydroxybenzene isomers. J Solid State Electrochem. doi:10.1007/s10008-011-1428-2

  13. Peng J, Gao Z (2006) Influence of micelles on the electrochemical behaviors of catechol and hydroquinone and their simultaneous determination. Anal Bioanal Chem 384:1525–1532

    Article  CAS  Google Scholar 

  14. Sun W, Jiang Q, Yang M, Jiao K (2008) Electrochemical behaviors of hydroquinone on a carbon paste electrode with ionic liquid as binder. Bull Kor Chem Soc 29:915–920

    Article  Google Scholar 

  15. Zhang Y, Zheng JB (2007) Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim Acta 52:7210–7216

    Article  CAS  Google Scholar 

  16. Kheiri F, Sabzi R, Jannatdoust E, Sedghi H (2010) Acetone extracted propolis as a novel membrane and its application in phenol biosensors: the case of catechol. J Solid State Electrochem. doi:10.1007/s10008-010-1250-2

  17. Zhao D, Zhang X, Feng L, Jia L, Wang S (2009) Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloid Surf B 74:317–321

    Article  CAS  Google Scholar 

  18. Wang L, Huang P, Bai J, Wang H, Zhang L, Zhao Y (2007) Covalent modification of a glassy carbon electrode with penicillamine for simultaneous determination of hydroquinone and catechol. Microchim Acta 158:151–157

    Article  CAS  Google Scholar 

  19. Qi H, Zhang C (2005) Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17:832–838

    Article  CAS  Google Scholar 

  20. Yu J, Du W, Zhao F, Zeng B (2009) High sensitive simultaneous determination of catechol and hydroquinone at mesoporous carbon CMK-3 electrode in comparison with multi-walled carbon nanotubes and Vulcan XC-72 carbon electrodes. Electrochim Acta 54:984–988

    Article  CAS  Google Scholar 

  21. Yang P, Zhu Q, Chen Y, Wang F (2009) Simultaneous determination of hydroquinone and catechol using poly(p-aminobenzoic acid) modified glassy carbon electrode. J Appl Polymer Sci 113:2881–2886

    Article  CAS  Google Scholar 

  22. Ahammad A, Sarker S, Rahman M, Lee J (2010) Simultaneous determination of hydroquinone and catechol at an activated glassy carbon electrode. Electroanalysis 22:694–700

    Article  CAS  Google Scholar 

  23. Ghanem MA (2007) Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode. Electrochem Commun 9:2501–2506

    Article  CAS  Google Scholar 

  24. Wang Z, Li S, Lv Q (2007) Simultaneous determination of dihydroxybenzene isomers at single-wall carbon nanotube electrode. Sens Actuators B 127:420–425

    Article  Google Scholar 

  25. Zhang D, Peng Y, Qi H, Gao Q, Zhang C (2009) Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers. Sens Actuators B 136:113–121

    Article  Google Scholar 

  26. Du HJ, Ye JS, Zhang JQ, Huang XD, Yu CZ (2011) A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. J Electroanal Chem 650:209–213

    Article  CAS  Google Scholar 

  27. Singh R (2010) Thin films of Pd and Pd–1% MWCNT as new electrocatalysts for oxidation of phenol in acid medium. J Solid State Electrochem 14:2113–2120

    Article  CAS  Google Scholar 

  28. Yin HS, Zhang QM, Zhou YL, Ma Q, Liu T, Zhu LS, Ai SY (2011) Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim Acta 56:2748–2753

    Article  CAS  Google Scholar 

  29. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  30. Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789

    Article  CAS  Google Scholar 

  31. Yin HS, Zhou YL, Cui L, Liu T, Ju P, Zhu LS, Ai SY (2011) Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly(amido amine) dendrimer. Microchim Acta 173:337–345

    Article  CAS  Google Scholar 

  32. Zhang FY, Li YJ, Gu YE, Wang ZH, Wang CM (2011) One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta 173:103–109

    Article  CAS  Google Scholar 

  33. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Soluation properties of graphite and graphene. J Am Chem Soc 24:7720–7721

    Article  Google Scholar 

  34. Liu KP, Zhang JJ, Yang GH, Wang CM, Zhu JJ (2010) Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem Commun 12:402–405

    Article  CAS  Google Scholar 

  35. Xu ZA, Gao N, Dong SJ (2006) Preparation and layer-by-layer self-assembly of positively charged multiwall carbon nanotubes. Talanta 68:753–758

    Article  CAS  Google Scholar 

  36. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 6:1339

    Article  Google Scholar 

  37. Niu JJ, Wang JN (2008) Activated carbon nanotubes-supported catalyst in fuel cells. Electrochim Acta 53:8058–8063

    Article  CAS  Google Scholar 

  38. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  39. Gulaboski R, Lovric M, Mirceski V, Bogeski I, Hoth M (2008) A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms. Biophys Chem 138:130–137

    Article  CAS  Google Scholar 

  40. Zhang Y, Zeng GM, Tang L, Huang DL, Jiang XY, Chen YN (2007) A hydroquinone biosensor using modified core–shell magnetic nanoparticles supported on carbon paste electrode. Biosens Bioelectron 22:2121–2126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (20775030) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhang, Y., Du, Y. et al. Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode. J Solid State Electrochem 16, 1323–1331 (2012). https://doi.org/10.1007/s10008-011-1526-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1526-1

Keywords

Navigation