Skip to main content
Log in

Oxygen reduction reaction in Pr2NiO4+δ /Ce0.9Gd0.1O1.95 and La0.6Sr0.4Co0.2Fe0.8O3−δ /La0.8Sr0.2Ga0.8Mg0.2O2.80 half cells: an electrochemical study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of La0.6Sr0.4Co0.2Fe0.8O3−δ and Pr2NiO4+δ electrodes screen-printed on La0.8Sr0.2Ga0.8Mg0.2O2.8 and Ce0.9Gd0.1O1.95, respectively, have been investigated by electrochemical impedance spectroscopy (EIS). A study of the heat treatment of La0.6Sr0.4Co0.2Fe0.8O3−δ material used as oxygen electrode associated to La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte was performed. The La0.6Sr0.4Co0.2Fe0.8O3−δ porous electrode sintered at 900 °C for 1 h in air exhibits the lowest cathodic polarization resistance; i.e. R P = 0.12 Ω cm2 at 600 °C. The SEM images show that the La0.6Sr0.4Co0.2Fe0.8O3−δ electrode structure is highly porous, facilitating the gas diffusion and maximizing the number of active sites for the oxygen reduction reaction (ORR). Furthermore, it forms good contact with the electrolyte after this heat treatment. In order to characterize the oxygen electrode reaction of La0.6Sr0.4Co0.2Fe0.8O3−δ and Pr2NiO4+δ , the electrochemical impedance spectroscopy (EIS) measurements were performed at temperatures between 400 and 700 °C and at different oxygen partial pressures (pO2) ranging in between 10−3 and 0.21 atm. Analysis of the impedance data revealed that there are two different processes involved in the cathode reaction. The first process in the medium-frequency range is assigned to the oxygen surface exchange reaction at the electrode/gas interface and possibly to the ionic diffusion in the material for La0.6Sr0.4Co0.2Fe0.8O3−δ and to the dissociation of the adsorbed molecular oxygen for Pr2NiO4+δ . The second one at low frequency is associated to the gas phase diffusion for both cathodes. The exchange current density, i 0, allows evaluating the electrocatalytic activity of the cathode materials. The La0.6Sr0.4Co0.2Fe0.8O3−δ /La0.8Sr0.2Ga0.8Mg0.2O2.8 couple shows the largest i 0 value, reaching 432 mA cm−2 at 700 °C and suggesting a high electrochemical activity for the O2 reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674

    Article  CAS  Google Scholar 

  3. Endler-Schuck C, Leonide A, Weber A, Uhlenbruck S, Tietz F, Ivers-Tiffée E (2011) Performance analysis of mixed ionic-electronic conducting cathodes in anode supported cells. J Power Sources 196:7257–7262

    Article  CAS  Google Scholar 

  4. Yokokawa H, Sakai N, Horita T, Yamaji K, Brito ME, Kishimoto H (2008) Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes. J Alloys Compd 452(1):41–47

    Article  CAS  Google Scholar 

  5. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36(5):1105–1117

    Article  CAS  Google Scholar 

  6. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94

    Article  CAS  Google Scholar 

  7. Huang K, Goodenough JB (2000) A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. J Alloys Compd 303–304:454–464

    Article  Google Scholar 

  8. Hayashi H, Suzuki M, Inaba H (2000) Thermal expansion of Sr- and Mg-doped LaGaO3. Solid State Ionics 128:131–139

    Article  CAS  Google Scholar 

  9. Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116(9):3801–3803

    Article  CAS  Google Scholar 

  10. Wang S, Katsuki M, Dokiya M, Hashimoto T (2003) High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-δ phase structure and electrical conductivity. Solid State Ionics 159:71–78

    Article  CAS  Google Scholar 

  11. Skinner SJ, Kilner JA (2000) Oxygen diffusion and surface exchange in La2-x Sr x NiO4+δ . Solid State Ionics 135:709–712

    Article  CAS  Google Scholar 

  12. Boehm E, Bassat JM, Streil MC, Dordor P, Mauvy F, Grenier JC (2003) Oxygen transport properties of La2Ni1-x CuxO4+δ mixed conducting oxides. Solid State Sci 5:973–981

    Article  CAS  Google Scholar 

  13. Mauvy F, Bassat JM, Boehm E, Manaud JP, Dordor P, Grenier JC (2003) Measurement of chemical and tracer diffusion coefficients of oxygen in La2Cu0.5Ni0.5O4+δ . Solid State Ionics 158:395–407

    Article  CAS  Google Scholar 

  14. Mauvy F, Lalanne C, Bassat JM, Grenier JC, Zhao H, Huo L, Stevens P (2006) Electrode properties of Ln2NiO4+δ (Ln = La, Nd, Pr): AC impedance and DC polarization studies. J Electrochem Soc 153:A1547–A1553

    Article  CAS  Google Scholar 

  15. Escudero MJ, Aguadero A, Alonso JA, Daza L (2007) A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J Electroanal Chem 611:107–116

    Article  CAS  Google Scholar 

  16. Ferkhi M, Ringuedé A, Khaled A, Zerroual L, Cassir M (2012) La1.98NiOδ , a new cathode material for solid oxide fuel cell: impedance spectroscopy study and compatibility with gadolinia-doped ceria and yttria-stabilized zirconia electrolytes. Electrochim Acta 75:80–87

    Article  CAS  Google Scholar 

  17. Marinha D, Dessemond L, Djurado E (2012) Electrochemical investigation of oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes deposited by electrostatic spray deposition. J Power Sources 197:80–87

    Article  CAS  Google Scholar 

  18. Ringuedé A, Fouletier J (2001) Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures. Solid State Ionics 139:167–177

    Article  Google Scholar 

  19. Baumann F, Fleig J, Habermeier HU, Maier J (2006) Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3-δ model electrodes. Solid State Ionics 177:1071–1081

    Article  CAS  Google Scholar 

  20. Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc 143:3554–3564

    Article  CAS  Google Scholar 

  21. Esquirol A, Brandon NP, Kilner JA, Mogensen M (2004) Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs. J Electrochem Soc 151:A1847–A1855

    Article  CAS  Google Scholar 

  22. Grunbaum N, Dessemond L, Fouletier J, Prado F, Caneiro A (2006) Electrode reaction of Sr1-x La x Co0.8Fe0.2O3-δ with x =0.1 and 0.6 on Ce0.9Gd0.1O1.95 at 600 ≤ T ≤800 °C. Solid State Ionics 177:907–913

    Article  CAS  Google Scholar 

  23. Grunbaum N, Dessemond L, Fouletier J, Prado F, Mogni L, Caneiro A (2009) Rate limiting steps of the porous La0.6Sr0.4Co0.8Fe0.2O3-δ electrode material. Solid State Ionics 180:1448–1452

    Article  CAS  Google Scholar 

  24. Philippeau B, Mauvy F, Mazataud C, Fourcade S, Grenier JC (2013) Comparative study of electrochemical properties of mixed conducting Ln2NiO4+δ (Ln = La, Pr and Nd) and La 0.6Sr0.4Fe0.8Co0.2O3. Solid State Ionics 249–250:17–25

    Article  Google Scholar 

  25. Adler SB (1998) Mechanism and kinetics of oxygen reduction on porous La1-x Sr x CoO3-δ electrodes. Solid State Ionics 111:125–134

    Article  CAS  Google Scholar 

  26. Jorgensen MJ, Mogensen M (2001) Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J Electrochem Soc 148(5):A433–A442

    Article  CAS  Google Scholar 

  27. Jiang SP, Love JG, Ramprakash Y (2002) Electrode behaviour at (La, Sr)MnO3/Y2O3-ZrO2 interface by electrochemical impedance spectroscopy. J Power Sources 110:201–208

    Article  CAS  Google Scholar 

  28. Adler SB, Henderson BT, Wilson MA, Taylor DM, Richards RE (2000) Reference electrode placement and seals in electrochemical oxygen generators. Solid State Ionics 134:35–42

    Article  CAS  Google Scholar 

  29. Ferchaud C, Grenier JC, Zhang-Steenwinkel Y, Van Tuel MMA, Van Berkel FPF, Bassat JM (2011) High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell. J Power Sources 196:1872–1879

    Article  CAS  Google Scholar 

  30. Mc Donald JR (1984) Note on the parameterization of the constant phase admittance element. Solid State Ionics 13:147–149

    Article  Google Scholar 

  31. Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys Chem Chem Phys 3(9):1668–1678

    Article  CAS  Google Scholar 

  32. SOFC Power (It), Private communication

  33. Letilly M, Le Gal La Salle A, Lachgar A, Joubert O (2010) Synthesis, structural analysis and electrochemical performances of BLSITCFx as new cathode materials for solid oxide fuel cells (SOFC) based on BIT07 electrolyte. J Power Sources 195:4779–4784

    Article  CAS  Google Scholar 

  34. Zhao K, Xu Q, Huang DP, Chen M, Kim BH (2011) Electrochemical evaluation of La2NiO4+δ -based composite electrodes screen-printed on Ce0.8Sm0.2O1.9 electrolyte. J Solid State Electrochem 16:2797–2804

    Article  Google Scholar 

  35. Rembelski D, Viricelle JP, Combemale L, Rieu M (2012) Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12(2):256–264

    Article  CAS  Google Scholar 

  36. Yaremchenko AA, Shaula AL, Logvinovich DI, Kharton VV, Kovalevsky AV, Naumovich EN, Frade JR, Marques FMB (2003) Oxygen-ionic conductivity of perovskite-type La1−xSrxGa1−yMgyM0.20O3−δ (M = Fe, Co, Ni). Math Chem Phys 82:684–690

    Article  CAS  Google Scholar 

  37. Takeda Y, Kanno R, Noda M, Tomida T, Tamamoto O (1987) Cathodic polarization phenomena of perovskite electrodes with stabilized zirconia. J Electrochem Soc 134:2656–2661

    Article  CAS  Google Scholar 

  38. Siebert E, Hammouche A, Kleitz M (1995) Impedance spectroscopy analysis of La1-x Sr x MnO3-yttria-stabilized zirconia electrode kinetics. Electrochim Acta 40:1741–1753

    Article  CAS  Google Scholar 

  39. Kournoutis VC, Tietz F, Bebelis S (2009) AC impedance characterisation of a La0.8Sr0.2Co0.2Fe0.8O3-δ electrode. Fuel Cells 9(6):852–860

    Article  CAS  Google Scholar 

  40. Lane JA, Benson SJ, Waller D, Kilner JA (1999) Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ. Solid State Ionics 121:201–208

    Article  CAS  Google Scholar 

  41. Mogni L, Grunbaum N, Prado F, Caneiro A (2011) Oxygen reduction reaction on Ruddlesden-popper phases studied by impedance spectroscopy. J Electrochem Soc 158(2):B202–B207

    Article  CAS  Google Scholar 

  42. Pang S, Jiang X, Li X, Wang Q, Su Z (2012) Characterization of Ba-deficient PrBa1-xCo2O5+δ as cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 204:53–59

    Article  CAS  Google Scholar 

  43. Liu J, Co AC, Paulson S, Birss VI (2006) Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes. Solid State Ionics 177:377–387

    Article  CAS  Google Scholar 

  44. Guo W, Liu J, Jin C, Gao H, Zhang Y (2009) Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte SOFCs. J Alloys Compd 473:43–47

    Article  CAS  Google Scholar 

  45. Piao J, Sun K, Zhang N, Chen X, Xu S, Zhou D (2007) Preparation and characterization of Pr1-xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 172:633–640

    Article  CAS  Google Scholar 

  46. Liu B, Zhang Y, Zhang L (2009) Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for solid oxide fuel cell. Int J Hydrogen Energy 34:1008–1014

    Article  CAS  Google Scholar 

  47. Qiang F, Sun KN, Zhang NQ, Zhu XD, Le S, Zhou DR (2007) Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy. J Power Sources 168(2):338–345

    Article  CAS  Google Scholar 

  48. J Wiley & Sons Inc. Publ. (1980) Electrochemical methods. Fundamentals and applications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Claude Grenier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philippeau, B., Mauvy, F., Nicollet, C. et al. Oxygen reduction reaction in Pr2NiO4+δ /Ce0.9Gd0.1O1.95 and La0.6Sr0.4Co0.2Fe0.8O3−δ /La0.8Sr0.2Ga0.8Mg0.2O2.80 half cells: an electrochemical study. J Solid State Electrochem 19, 871–882 (2015). https://doi.org/10.1007/s10008-014-2686-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2686-6

Keywords

Navigation