Skip to main content
Log in

pH-controlled morphological structure and electrochemical performances of polyaniline/nickel hexacyanoferrate nanogranules during electrochemical deposition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

To explore the dependences of morphology and electrochemical performance of polyaniline/nickel hexacyanoferrate (PANI/NiHCF) nanogranules on pH value of the reaction system, electrodeposition of PANI/NiHCF nanogranules was performed across a pH range from 0 to 7 on carbon nanotubes (CNTs)-modified platinum substrate by cyclic voltammetry in a mixture of 0.002 mol L−1 NiSO4, 0.25 mol L−1 Na2SO4, 0.002 mol L−1 K3Fe(CN)6, and 0.01 mol L−1 aniline solutions. The morphology and structure of PANI/NiHCF nanogranules were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. The supercapacitive performances of the nanogranules were investigated with cyclic voltammetry (CV), charge/discharge tests, and electrochemical impedance spectroscopy (EIS). The results showed that the nanogranules with different morphology and sizes were obtained with the change of pH values from 0 to 7, which could control the mechanism of homogeneous or heterogeneous nucleation directly. The nanogranules were dispersed in matrix uniformly at pH 0 and pH 1, while the size of which decreased with the increase of pH values. The smooth cross-linking network structure was found from pH 2 to 7. The structure of PANI/NiHCF nanogranules had slightly changed from pH 0 to 7. PANI/NiHCF nanogranules had good electrochemical performance from pH 0 to 7 in a mixture of 0.5 mol L−1 H2SO4 and 0.5 mol L−1 KNO3 solutions, and the highest specific capacitance value of 274 F g−1 was obtained at current densities of 2 mA cm−2 in neutral medium. PANI/NiHCF nanogranules had high stability in neutral medium after 2,000 cycles by CV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kulesza PJ, Miecznikowski K, Malik MA, Galkowski M, Chojak M, Caban K, Wieckowski A (2001) Electrochemical preparation and characterization of hybrid films composed of prussian blue type metal hexacyanoferrate and conducting polymer. Electrochim Acta 46:4065–4073

    Article  CAS  Google Scholar 

  2. Wang Q, Yan J, Fan ZG, Wei T, Zhang ML, Jing XY (2014) Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors. J Power Sources 247:197–203

    Article  CAS  Google Scholar 

  3. Imran SM, Kim Y, Shao G, Hussain M, Choa YH, Kim HT (2014) Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization. J Mater Sci 49:1328–1335

    Article  CAS  Google Scholar 

  4. An HF, Wang Y, Wang XY, Li N, Zheng LP (2010) The preparation of PANI/CA composite electrode material for supercapacitors and its electrochemical performance. J Solid State Electrochem 14:651–657

    Article  CAS  Google Scholar 

  5. Peng XY, Liu XX, Hua PJ, Diamond D, Lau KT (2010) Electrochemical codeposition of nickel oxide and polyaniline. J Solid State Electrochem 14:1–7

    Article  CAS  Google Scholar 

  6. Ganash AA, Al-Nowaiser FM, Al-Thabaiti SA, Hermas AA (2013) Protection of stainless steel by the electrodeposition of polyaniline/poly(o-phenylenediamine) composite layers. J Solid State Electrochem 17:849–860

    Article  CAS  Google Scholar 

  7. Liu XX, Zhang L, Li YB, Bian LJ, Huo YQ, Su Z (2006) Electrosynthesis of polyaniline/SiO2 composite at high pH in the absence of extra supporting electrolyte. Polym Bull 57:825–832

    Article  CAS  Google Scholar 

  8. Zamponi S, Berrettoni M, Kulesza PJ, Miecznikowski K, Malik MA, Makowski O, Marassi R (2003) Influence of experimental conditions on electrochemical behavior of prussian blue type nickel hexacyanoferrate film. Electrochim Acta 48:4261–4269

    Article  CAS  Google Scholar 

  9. Malik MA, Miecznikowski K, Kulesza PJ (2000) Quartz crystal microbalance monitoring of mass transport during redox processes of cyanometallate modified electrodes: complex charge transport in nickel hexacyanoferrate films. Electrochim Acta 45:3777–3784

    Article  CAS  Google Scholar 

  10. Sabzi RE, Kant K, Losic D (2010) Electrochemical synthesis of nickel hexacyanoferrate nanoarrays with dots, rods and nanotubes morphology using a porous alumina template. Electrochim Acta 55:1829–1835

    Article  CAS  Google Scholar 

  11. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  12. Silva J, Pimentel D, Souto D, de Cássia Silva Luz R, Damos F (2013) Application of horseradish peroxidase/polyaniline/bis(2-aminoethyl) polyethylene glycol-functionalized carbon nanotube composite as a platform for hydrogen peroxide detection with high sensitivity at low potential. J Solid State Electrochem 17:2795–2804

    Article  Google Scholar 

  13. Mohantry S, Misra A (2014) Carbon nanotube based multifunctional flame sensor. Sensor Actuators B-Chem 192:594–600

    Article  Google Scholar 

  14. Zang Y, Hao XG, Wang ZD, Zhang ZL, Liu SB (2010) Copolymerization and capacitive performance of composite carbon nanotubes/polyaniline/nickel hexacyanoferrate films. Acta Phys -Chim Sin 26:291–298

    CAS  Google Scholar 

  15. Li XM, Du X, Wang ZD, Hao XG, Guan GQ, Zhang H, Abuliti A, Ma GZ (2014) Electroactive NiHCF/PANI hybrid films prepared by pulse potentiostatic method and its performance for H2O2 detection. J Electroanal Chem 717–718:69–77

    Article  Google Scholar 

  16. Wang ZD, Sun SB, Hao XG, Ma XL, Guan GD, Zhang ZL, Liu SB (2012) A facile electrosynthesis method for the controllable preparation of electroactive nickel hexacyanoferrate/polyaniline hybrid films for H2O2 detection. Sensor Actuators B-Chem 171:1073–1080

    Article  Google Scholar 

  17. Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481

    Article  CAS  Google Scholar 

  18. Li D, Kaner RB (2005) Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc 128:968–975

    Article  Google Scholar 

  19. Zhang X, Kolla HS, Wang X, Raja K, Manohar SK (2006) Fibrillar growth in polyaniline. Adv Funct Mater 16:1145–1152

    Article  Google Scholar 

  20. Huang J, Virji S, Weiller BH, Kaner RB (2002) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    Article  Google Scholar 

  21. Wang Y, Liu Z, Han B, Sun Z, Huang Y, Yang G (2004) Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant. Langmuir 21:833–836

    Article  Google Scholar 

  22. Zhong WB, Wang YX, Yan Y, Sun YF, Deng JP, Yang W (2007) Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons. J Phys Chem B 111:3918–3926

    Article  CAS  Google Scholar 

  23. Basavaiah K, Prasad MD, Rao AVP (2014) Simultaneous synthesis of polyaniline nanorods and magnetite nanoparticles via self-assembly method. J Exp Nanosci 9:491–500

    Article  CAS  Google Scholar 

  24. Bhandari S, Singha NK, Khastgir D (2013) Electrochemical synthesis of nanostructured polyaniline: heat treatment and synergistic effect of simultaneous dual doping. J Appl Polym Sci 129:1264–1273

    Article  CAS  Google Scholar 

  25. Kalaji M, Nyholm L, Peter LM (1991) A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films. J Electroanal Chem Interfacial Electrochem 313:271–289

    Article  CAS  Google Scholar 

  26. Peng XY, Luan F, Liu XX, Diamond D, Lau KT (2009) pH-controlled morphological structure of polyaniline during electrochemical deposition. Electrochim Acta 54:6172–6177

    Article  CAS  Google Scholar 

  27. Zhang LJ, Zujovic ZD, Peng H, Bowmaker GA, Kilmartin PA, Travas-Sejdic J (2008) Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules 41:8877–8884

    Article  CAS  Google Scholar 

  28. Liu XX, Zhang L, Li YB, Bian LJ, Su Z, Zhang LJ (2005) Electropolymerization of aniline in aqueous solutions at pH 2 to 12. J Mater Sci 40:4511–4515

    Article  CAS  Google Scholar 

  29. Neff VD (1978) Electrochemical oxidation and reduction of thin films of prussian blue. J Electrochem Soc 125:886–887

    Article  CAS  Google Scholar 

  30. Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 104:4767–4772

    Article  CAS  Google Scholar 

  31. Jeerage KM, Schwartz DT (2000) Characterization of cathodically deposited nickel hexacyanoferrate for electrochemically switched ion exchange. Sep Sci Technol 35(15):2375–2392

    Article  CAS  Google Scholar 

  32. Kumar AS, Barathi P, Pillai KC (2011) In situ precipitation of nickel-hexacyanoferrate within multi-walled carbon nanotube modified electrode and its selective hydrazine electrocatalysis in physiological pH. J Electroanal Chem 654:85–95

    Article  Google Scholar 

  33. Li D, Kaner RB (2007) How nucleation affects the aggregation of nanoparticles. J Mater Chem 17(22):2279–2282

    Article  CAS  Google Scholar 

  34. McManus PM, Cushman RJ, Yang SC (1987) Influence of oxidation and protonation on the electrical conductivity of polyaniline. J Phys Chem 91:744–747

    Article  CAS  Google Scholar 

  35. Li D, Huang J, Kaner RB (2008) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  Google Scholar 

  36. Shi JH, Wu Q, Li RM, Zhu YX, Qin YJ, Qiao CZ (2013) The pH-controlled morphology transition of polyaniline from nanofibers to nanospheres. Nanotechnology 24:175602

    Article  Google Scholar 

  37. Zou YJ, Sun LX, Xu F (2007) Biosensor based on polyaniline-prussian blue/multi-walled carbon nanotubes hybrid composites. Biosens Bioelectron 22:2669–2674

    Article  CAS  Google Scholar 

  38. Boruah M, Kalita A, Pokhrel B, Dolui SK, Boruah R (2013) Synthesis and characterization of pH responsive conductive composites of poly(acrylic acid-co-acrylamide) impregnated with polyaniline by interfacial polymerization. Adv Polym Tech 32:E520–E530

    Article  CAS  Google Scholar 

  39. Li CM, Mu SL (2005) The electrochemical activity of sulfonic acid ring-substituted polyaniline in the wide pH range. Synth Met 149:143–149

    Article  CAS  Google Scholar 

  40. Xiang CL, Zou YJ, Sun LX, Xu F (2007) Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modified electrode. Talanta 74:206–211

    Article  CAS  Google Scholar 

  41. Lisowska-Oleksiak A, Nowak AP (2008) Impedance spectroscopy studies on hybrid materials consisting of poly(3,4-ethylenedioxythiophene) and iron, cobalt and nickel hexacyanoferrate. Solid State Ionics 179:72–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation (Grant No. 21276173), the Qualified Personnel Foundation of Taiyuan University of Technology (Grant No. tyut-rc201307a, tyut-rc201261a), and the Youth Foundation of Taiyuan University of Technology (Grant No. 2013Z046, 2013Z006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaogang Hao or Xinru Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, Y., Hao, X. et al. pH-controlled morphological structure and electrochemical performances of polyaniline/nickel hexacyanoferrate nanogranules during electrochemical deposition. J Solid State Electrochem 18, 2885–2892 (2014). https://doi.org/10.1007/s10008-014-2559-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2559-z

Keywords

Navigation