Skip to main content

Advertisement

Log in

Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A hierarchical polyaniline nanorod/manganese dioxide nanoflower (PANI/MnO2) core/shell nanostructure was successfully constructed through in situ polymerization, in which PANI nanorods work as the core and K-birnessite-type MnO2 act as the shell. The core/shell nanostructure effectively increases active surface areas and obviously decreases the ion transmission distance, which is conducive to the efficient contact and transfer of ions. The morphology, the chemical structure, and the crystal phase of PANI/MnO2 were measured by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Moreover, its supercapacitor behaviors were analyzed by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests, showing that this nanostructure exhibits better electrochemical activity and higher capacitance performance than pure PANI nanorods and pure MnO2. In 1.0 M Na2SO4 electrolyte solution, the specific capacitance of PANI/MnO2 is 215 F g−1 at 0.30 A g−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li H, He Y, Pavlinek V, Cheng Q, Saha P, Li C (2015) MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes. J Mater Chem A 3:17165–17171

    Article  CAS  Google Scholar 

  2. Wu L, Hao L, Pang B, Wang G, Zhang Y, Li X (2017) MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors. J Mater Chem A 5:4629–4637

    Article  CAS  Google Scholar 

  3. Ma Y, Ma M, Yin X, Shao Q, Lu N, Feng Y, Lu Y, Wujcik EK, Mai X, Wang C, Guo Z (2018) Tuning polyaniline nanostructures via end group substitutions and their morphology dependent electrochemical performances. Polymer 156:128–135

    Article  CAS  Google Scholar 

  4. Ma Y, Zhuang Z, Ma M, Yang Y, Li W, Dong M, Wu S, Ding T, Guo Z (2019) Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer 182:121808

    Article  Google Scholar 

  5. Ghosh K, Yue CY, Sk MM, Jena RK (2017) Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl Mater Interfaces 9:15350–15363

    Article  CAS  Google Scholar 

  6. Hekmat F, Shahrokhian S, Taghavinia N. J. T. J. o. P. C. C. (2018) Ultralight flexible asymmetric supercapacitors based on manganese dioxide–polyaniline nanocomposite and reduced graphene oxide electrodes directly deposited on foldable cellulose papers. J Phys Chem C 122:27156–27168

    Article  CAS  Google Scholar 

  7. Ren L, Zhang G, Yan Z, Kang L, Xu H, Shi F, Lei Z, Z.-H. J. A. a. m. Liu and interfaces (2015) Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor. ACS Appl Mater Interfaces 7:28294–28302

    Article  CAS  Google Scholar 

  8. Yang Z, Ma J, Araby S, Shi D, Dong W, Tang Chen TMJJoPS (2019) High-mass loading electrodes with exceptional areal capacitance and cycling performance through a hierarchical network of MnO2 nanoflakes and conducting polymer gel. J Power Sources 412:655–663

    Article  CAS  Google Scholar 

  9. Jabeen N, Xia Q, Yang M, H. J. A. a. m. Xia and interfaces (2016) Unique core–shell nanorod arrays with polyaniline deposited into mesoporous NiCo2O4 support for high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 8:6093–6100

    Article  CAS  Google Scholar 

  10. Ambade RB, Ambade SB, Shrestha NK, Salunkhe RR, Lee W, Bagde SS, Kim JH, Stadler FJ, Yamauchi Y, Lee SH (2017) Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications. J Mater Chem A 5:172–180

    Article  CAS  Google Scholar 

  11. Khalaj M, Sedghi A, Miankushki HN, Golkhatmi SZ (2019) Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes. Energy 188:116088

    Article  CAS  Google Scholar 

  12. Lu C, Chen X (2019) Electrospun polyaniline nanofiber networks toward high-performance flexible supercapacitors. Adv Mater Technol 4:1900564

    Article  CAS  Google Scholar 

  13. Giannakou P, Masteghin MG, Slade RC, Hinder SJ, Shkunov M (2019) Energy storage on demand: ultra-high-rate and high-energy-density inkjet-printed NiO micro-supercapacitors. J Mater Chem A 7:21496–21506

    Article  CAS  Google Scholar 

  14. Ma M, Li W, Tong Z, Ma Y, Bi Y, Liao Z, Zhou J, Wu G, Li M, Yue J, Song X, Zhang X (2020) NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption. J Colloid Interface Sci 578:58–68

    Article  CAS  Google Scholar 

  15. Samuel E, Kim TG, Park CW, Joshi B, Swihart MT, Yoon SS (2019) Supersonically sprayed Zn2SnO4/SnO2/CNT nanocomposites for high-performance supercapacitor electrodes. ACS Sustain Chem Eng 7:14031–14040

    Article  CAS  Google Scholar 

  16. Ma C, Wang R, Tetik H, Gao S, Wu M, Tang Z, Lin D, Ding D, Wu W (2019) Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems. Nano Energy 66:104124

    Article  CAS  Google Scholar 

  17. Ma M, Li W, Tong Z, Yang Y, Ma Y, Cui Z, Wang R, Lyu P, Huang W (2020) 1D flower-like Fe3O4@SiO2@MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption. Mater Des 188:108462

    Article  CAS  Google Scholar 

  18. Pant B, Park M, Park SJ (2019) TiO2 NPs assembled into a carbon nanofiber composite electrode by a one-step electrospinning process for supercapacitor applications. Polymers 11:899

    Article  CAS  Google Scholar 

  19. Liu C, Gao A, Yi F, Shu D, Yi H, Zhou X, Hao J, He C, Zhu Z (2019) Anchoring ultrafine Co3O4 grains on reduced oxide graphene by dual-template nanocasting strategy for high-energy solid state supercapacitor. Electrochim Acta 326:134965

    Article  CAS  Google Scholar 

  20. Deng M-J, Yeh L-H, Lin Y-H, Chen J-M, Chou T-H (2019) 3D Network V2O5 electrodes in a gel electrolyte for high-voltage wearable symmetric pseudocapacitors. ACS Appl Mater Interfaces 11:29838–29848

    Article  CAS  Google Scholar 

  21. Mezgebe MM, Xu K, Wei G, Guang S, H. J. J. o. A. Xu and Compounds (2019) Polyaniline wrapped manganese dioxide nanorods: facile synthesis and as an electrode material for supercapacitors with remarkable electrochemical properties. J Alloy Compd 794:634–644

    Article  CAS  Google Scholar 

  22. Sk MM, Yue CY, Jena RK (2015) Non-covalent interactions and supercapacitance of pseudo-capacitive composite electrode materials (MWCNT-COOH/MnO2/PANI). Synth Met 208:2–12

    Article  CAS  Google Scholar 

  23. Liang F, Liu Z, Liu Y.J.J.O.M.S.M.I.E (2017) Enhanced electrochemical properties of MnO2/PPy nanocomposites by miniemulsion polymerization J Mater Sci: Mater Electron 28:10603–10610

  24. Huang Z-H, Song Y, Feng DY, Sun Z, Sun X, Liu X-XJAN (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12:3557–3567

    Article  CAS  Google Scholar 

  25. Yang J, Yang Y, Lan J, Yu Y, X. J. J. o. E. C. Yang (2019) Polyaniline-manganese dioxide-carbon nanofiber ternary composites with enhanced electrochemical performance for supercapacitors. J Electroanal Chem 843:22–30

    Article  CAS  Google Scholar 

  26. Ma Y, Hou C, Zhang H, Qiao M, Chen Y, Zhang H, Zhang Q, Z. J. J. o. M. C. A. Guo (2017) Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures. J Mater Chem A 5:14041–14052

    Article  CAS  Google Scholar 

  27. Sun X, Gan M, Ma L, Wang H, Zhou T, Wang S, Dai W, Wang H (2015) Fabrication of PANI-coated honeycomb-like MnO2 nanospheres with enhanced electrochemical performance for energy storage. Electrochim Acta 180:977–982

    Article  CAS  Google Scholar 

  28. Yang M, Hong SB, Choi BG (2015) Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors. Phys Chem Chem Phys 17:29874–29879

    Article  CAS  Google Scholar 

  29. Pan C, Gu H, Dong L (2016) Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors. J Power Sources 303:175–181

    Article  CAS  Google Scholar 

  30. Niu Z, Zhou W, Chen X, Chen J, Xie SJAM (2015) Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv Mater 27:6002–6008

    Article  CAS  Google Scholar 

  31. Yao W, Zhou H, Y. J. J. o. p. s. Lu (2013) Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors. J Power Sources 241:359–366

  32. Bahloul A, Nessark B, Briot E, Groult H, Mauger A, Zaghib K, C. J. J. o. p. s. Julien (2013) Polypyrrole-covered MnO2 as electrode material for supercapacitor. J Power Sources 240:267–272

    Article  CAS  Google Scholar 

  33. Ma Y, Hou CP, Zhang HP, Zhang QY, Liu H, Wu SD, Guo ZH (2019) Three-dimensional core-shell Fe3O4/polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim Acta 315:114–123

    Article  CAS  Google Scholar 

  34. Wang QF, Ma Y, Liang X, Zhang DH, Miao MH (2019) Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem Eng J 371:145–153

    Article  CAS  Google Scholar 

  35. Du W, Wang XN, Zhan J, Sun XQ, Kang LT, Jiang FY, Zhang XY, Shao Q, Dong MY, Liu H, Murugadoss V, Guo ZH (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915

    Article  CAS  Google Scholar 

  36. He W, Wang C, Zhuge F, Deng X, Xu X, Zhai T (2017) Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35:242–250

    Article  CAS  Google Scholar 

  37. Chi MQ, Zhu Y, Jing LW, Wang C, Lu XF (2019) Fabrication of oxidase-like polyaniline-MnO2 hybrid nanowires and their sensitive colorimetric detection of sulfite and ascorbic acid. Talanta 191:171–179

    Article  CAS  Google Scholar 

  38. Liu YC, Miao XF, Fang JH, Zhang XX, Chen SJ, Li W, Feng WD, Chen YQ, Wang W, Zhang YN (2016) Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor. ACS Appl Mater Interfaces 8:5251–5260

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 51503116), the Natural Science Foundation of Shandong (Grant No. ZR2019BB063), the Applied Basic Research Foundation of Qingdao City (Grant No. 19-6-2-13-cg), and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2019RCJJ002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingliang Ma or Yong Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Z., Wang, W., Wei, Y. et al. Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv Compos Hybrid Mater 4, 938–945 (2021). https://doi.org/10.1007/s42114-021-00225-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00225-0

Keywords

Navigation