Skip to main content
Log in

High-performance carbon-coated LiMnPO4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiMnPO4/C powders have been prepared by a solid-state method with sucrose as carbon source. The structure, morphology, and electrochemical performance of the LiMnPO4/C samples have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electronic microscopy (TEM), galvanostatic charge and discharge, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The LiMnPO4/C sample prepared by the two-step solid-state method exhibits a specific capacity of 156 mA h g−1 after 40 cycles, and over 90 % of the initial capacity can be retained with a charge-discharge rate of 0.5 C and a voltage range of 2.5–4.4 V at 50 °C. The improvement of electrochemical performance attributes to the highly uniform distribution of the minimizing particle size as well as the superior electrical conductivity of the carbon-coated nano-LiMnPO4 materials by facile two-step solid-state synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Padhi K, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Konarova M, Taniguchi I (2008) Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties. Mater Res Bull 43:3305–3317

    Article  CAS  Google Scholar 

  3. Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners JH, Poletto L, Gratzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628

    Article  CAS  Google Scholar 

  4. Barpanda P, Djellab K, Recham N, Armand M, Tarascon JM (2011) Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. J Mater Chem 21:10143–10152

    Article  CAS  Google Scholar 

  5. Konarova M, Taniguchi I (2009) Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technol 191:111–116

    Article  CAS  Google Scholar 

  6. Konarova M, Taniguchi I (2010) Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J Power Sources 195:3661–3667

    Article  CAS  Google Scholar 

  7. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Article  CAS  Google Scholar 

  8. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913–A921

    Article  CAS  Google Scholar 

  9. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189

    Article  Google Scholar 

  10. Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem Commun 61:144–1148

    Google Scholar 

  11. Yamada A, Yonemura M, Takei Y, Sonoyama N, Kanno R (2005) Fast charging LiFePO4. Electrochem Solid-State Lett 8:A55–A58

    Article  CAS  Google Scholar 

  12. Meethong N, Huang HYS, Speakman S, Carter W, Chiang YM (2007) Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv Funct Mater 17:1115–1123

    Article  CAS  Google Scholar 

  13. Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99

    Article  CAS  Google Scholar 

  14. Drezen T, Kwon NH, Bowen P, Teerlinck I, Isono M, Exnar I (2007) Effect of particle size on LiMnPO4 cathodes. J Power Sources 174:949–953

    Article  CAS  Google Scholar 

  15. Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J Electrochem Soc 153:A716–A723

    Article  CAS  Google Scholar 

  16. Murugan AV, Muraliganth T, Manthiram A (2009) One-pot microwave- hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe, and Co) cathodes. J Electrochem Soc 156:A79–A83

    Article  Google Scholar 

  17. Shiratsuchi T, Okada S, Doi T, Yamaki J (2009) Cathodic performance of LiMn1-xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere. Electrochim Acta 54:3145–3151

    Article  CAS  Google Scholar 

  18. Wang D, Ouyang C, Drézen T, Exnar I, Kay A, Kwon NH, Gouerec P, Miners JH, Wang M, Grätzel M (2010) Improving the electrochemical activity of LiMnPO4 via Mn-Site substitution. J Electrochem Soc 157:A225–A229

    Article  CAS  Google Scholar 

  19. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J (2006) Porous olivine composites synthesized by sol-gel technique. J Power Sources 153:274–280

    Article  CAS  Google Scholar 

  20. Moon S, Muralidharan P, Kim DK (2012) Carbon coating by high-energy milling and electrochemical properties of LiMnPO4 obtained in polyol process. Ceram Int 38S:S471–S475

    Article  Google Scholar 

  21. Chen J, Wang S, Whittingham MS (2007) Hydrothermal synthesis of cathode materials. J Power Sources 174:442–448

    Article  CAS  Google Scholar 

  22. Chen J, Vacchio MJ, Wang S, Chernova N, Zavalij PY, Whittingham MS (2008) The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics 178:1676–1693

    Article  CAS  Google Scholar 

  23. Chen GY, Richardson TJ (2010) Thermal instability of Olivine-type LiMnPO4 cathodes. J Power Sources 195:1221–1224

    Article  CAS  Google Scholar 

  24. Wang Y, Yang Y, Yang Y, Shao H (2010) Enhanced electrochemical performance of unique morphological LiMnPO4/C cathode material prepared by solvothermal method. Solid State Commun 150:81–85

    Article  CAS  Google Scholar 

  25. Zuo PJ, Cheng GY, Wang LG, Ma YL, Du CY, Cheng XQ, Wang ZB, Yin GP (2013) Ascorbic acid-assisted solvothermal synthesis of LiMn0.9Fe0.1PO4/C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:872–879

    Article  CAS  Google Scholar 

  26. Xiao J, Xu W, Choi D, Zhang JG (2010) Synthesis and characterization of lithium manganese phosphate by a precipitation method. J Electrochem Soc 157:A142–A147

    Article  CAS  Google Scholar 

  27. Ma J, Qin QZ (2005) Electrochemical performance of nanocrystalline LiMPO4 thin-films prepared by electrostatic spray deposition. J Power Sources 148:66–71

    Article  CAS  Google Scholar 

  28. Ni JF, Kawabe Y, Morishita M, Watada M, Sakai T (2011) Improved electrochemical activity of LiMnPO4 by high-energy ball-milling. J Power Sources 196:8104–8109

    Article  CAS  Google Scholar 

  29. Choi D, Wang DH, Bae IT, Xiao J, Nie ZM, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang ZG, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10:2799–2805

    Article  CAS  Google Scholar 

  30. Bramnik NN, Ehrenberg H (2008) Precursor-based synthesis and electrochemical performance of LiMnPO4. J Alloys Compd 464:259–264

    Article  CAS  Google Scholar 

  31. Doan TN, Taniguchi I (2011) Cathode performance of LiMnPO4/C nanocomposites prepared by a combination of spray pyrolysis and wet ball-milling followed by heat treatment. J Power Sources 196:1399–1408

    Article  CAS  Google Scholar 

  32. Sibu CP, Kumar SR, Mukundan P, Warrier KGK (2002) Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide. Chem Mater 142:876–2881

    Google Scholar 

  33. Bakenov Z, Taniguchi I (2010) Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons. J Power Sources 195:7445–7451

    Article  CAS  Google Scholar 

  34. Chen G, Wilcox JD, Richardson TJ (2008) Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem Solid-State Lett 11:A190–A194

    Article  CAS  Google Scholar 

  35. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863

    Article  CAS  Google Scholar 

  36. Doan TN, Bakenov Z, Taniguchi I (2010) Preparation of carbon coated LiMnPO4 powders by a combination of spray pyrolysis with dry ball-milling followed by heat treatment. Adv Powder Technol 21:187–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by The Natural Science Foundation of China (no. 50902038), National High Technology Research and Development Program (863 Program) of China (no. 2012AA110203), and Heilong Jiang Postdoctoral Funds for Scientific Research Initiation (no. LBH-Q12084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengjian Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Zuo, P., Wang, L. et al. High-performance carbon-coated LiMnPO4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery. J Solid State Electrochem 19, 281–288 (2015). https://doi.org/10.1007/s10008-014-2556-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2556-2

Keywords

Navigation