Skip to main content

Advertisement

Log in

Electrochemical production, characterization, and application of MWCNTs

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The subject of this study is production of carbon nanotubes (CNTs) using an original procedure of reduction of lithium molten salts onto graphite cathode; their structural characterization and application as support material for electrocatalysts aimed for hydrogen evolution. As-produced CNTs were characterized by means of scanning and transmission electron microscopy (SEM and TEM), Raman spectroscopy, and thermogravimetric and differential thermal analysis (DTA). SEM and TEM images have shown that nanotubes are mostly of curved shape with length of 1–20 μm and diameter of 20–40 nm. Raman peaks indicate that the crystallinity of produced nanotubes is rather low. The obtained results suggest that formed product contains up to 80 % multiwalled carbon nanotubes (MWCNTs), while the rest being non-reacted graphite and fullerenes. DTA curves show that combustion process of the nanotubes takes place in two stages, i.e., at 450 and 720 °C. At the lower temperature, combustion of MWCNTs occurs, while at higher one, fullerenes and non-reacted graphite particles burn. As-produced MWCNTs were used as electrocatalyst’s support materials and their performance was compared with that of traditional carbon support material Vulcan XC-72. MWNTs have shown almost twice higher real surface area, and electrocatalyst deposited on them showed better catalytic activity than corresponding one deposited on Vulcan XC-72.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Trojanowicz M (2006) Analytical application of carbon nanotubes: a review. Trends in Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  3. Gooding JJ (2005) Nanostructural electrodes with carbon nanotubes: a review on electrochemistry and application for sensing. Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  4. Avouris P (2002) Molecular electronics with carbon nanotubes. Acc Chem Res 35:1026–1034

    Article  CAS  Google Scholar 

  5. Cooper EB, Manalis SR, Fang H, Dai H, Matsumoto K, Minne SC, Hunt T, Quate CF (1999) Terabit-per-square-inch data storage with the atomic force microscope. Appl Phys Lett 75:3566–3568

    Article  CAS  Google Scholar 

  6. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37:781–819

    Article  CAS  Google Scholar 

  7. Lee YH, An KH, Lim SC, Kim WS, Jeong HJ, Doh C-H, Moon S-I (2002) Application of carbon nanotubes to energy storage devices. New Diam Front Carb Technol 12:209–228

    CAS  Google Scholar 

  8. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654

    Article  CAS  Google Scholar 

  9. Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH (2002) Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater 14:382–385

    Article  CAS  Google Scholar 

  10. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    Article  CAS  Google Scholar 

  11. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  CAS  Google Scholar 

  12. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotech 10:3739–3758

    Article  CAS  Google Scholar 

  13. Hsu WK, Hare JP, Terrones M, Kroto HW, Walton DRM, Harris PJF (1995) Condensed-phase nanotubes. Nature 377:687

    Article  CAS  Google Scholar 

  14. Hsu WK, Terrones M, Hare JP, Terrones H, Kroto HW, Walton DRM (1996) Electrolytic formation of carbon nanostructures. Chem Phys Lett 262:161–166

    Article  CAS  Google Scholar 

  15. Novoselova IA, Oliynyk NF, Volkov SV (2007) Electrolytic production of carbon nanotubes in chloride-oxide melts under carbon dioxide pressure. In: Schur DV, Baranowski B, Shpak AP, Skorokhod VV, Kale A, Veziroglu TN, Zaginaichenko SY (eds) Hydrogen materials science and chemistry of carbon nanomaterials. Springer, Berlin, pp 459–465

    Chapter  Google Scholar 

  16. Chen GZ, Fan X, Luget A, Shaffer MSP, Fray DJ, Windle AH (1998) Electrolytic conversion of graphite to carbon nanotubes in fused salts. J Electroanal Chem 446:m1–m6

    Article  Google Scholar 

  17. Chen GZ, Kinloch I, Shaffer MSP, Fray DJ, Windle AH (1998) Electrochemical investigation of the formation of carbon nanotubes in molten salts. High Temp Mater Proc 2:459–469

    CAS  Google Scholar 

  18. Fray DJ (1999) Intercalation from molten salts. High Temp Mater Proc 3:67–76

    CAS  Google Scholar 

  19. Fray DJ (1999) Intercalation from molten salts. Molt Sal Bull 66:2–11

    Google Scholar 

  20. Schwandt C, Dimitrov AD, Fray DJ (2010) The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. J Electroanal Chem 647:150–158

    Article  CAS  Google Scholar 

  21. Dimitrov AD, Chen GZ, Kinloch LA, Fray DJ (2002) A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts. Electrochim Acta 48:91–102

    Article  CAS  Google Scholar 

  22. Dimitrov AT, Paunovic P, Tomova A, Grozdanov A (2011) Physical characterisation of CNT’s produced by electrolysis in molten LiCl. Fray International Symposium, Cancun

    Google Scholar 

  23. Maillard F, Simonov PA, Savinova ER (2009) Carbon materials as supports for fuel cell electrocatalysts. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, New York, pp 429–480

    Google Scholar 

  24. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A: Gen 253:337–338

    Article  CAS  Google Scholar 

  25. Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofibre- supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36:507–522

    Article  CAS  Google Scholar 

  26. Marsan B, Fradette N, Beaudoin G (1992) Physicochemical and electrochemical properties of CuCo2O4 electrodes prepared by thermal decomposition for oxygen evolution. J Electrochem Soc 139:1889–1896

    Article  Google Scholar 

  27. Da Silva LM, De Faria LA, Boodts JFC (2001) Determination of the morphology factor of oxide layers. Electrochim Acta 47:395–403

    Article  Google Scholar 

  28. Paunovic P, Radev I, Dimitrov AT, Popovski O, Lefterova E, Slavcheva E, Hadži Jordanov S (2009) New nano-structured and interactive supported composite electrocatalysts for hydrogen evolution with partially replaced platinum loading. Int J Hydr Energy 34:2866–2873

    Article  CAS  Google Scholar 

  29. Saxby JD, Chatfield SP, Palmisano AJ, Vassallo AM, Wilson MA, Pang LSK (1992) Thermogravimetric analysis of buckminsterfullerene and related materials in air. J Phys Chem 96:17–18

    Article  CAS  Google Scholar 

  30. Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2:615–619

    Article  CAS  Google Scholar 

  31. Hiura H, Ebbesen TW, Tanigaki K, Takahashi H (1993) Raman studies of carbon nanotubes. Chem Phys Lett 202:509–512

    Article  CAS  Google Scholar 

  32. Li W, Zhang H, Wang C, Xu L, Zhu K, Xie S (1997) Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl Phys Lett 70:2684–2686

    Article  CAS  Google Scholar 

  33. Tunistra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  Google Scholar 

  34. Pimenta MA, Marucci A, Empedocles SA, Bewendi MG, Hanlon EBV, Rao AM (1998) Raman modes of metallic carbon nanotubes. Phys Rev B 58:R16016–R16019

    Article  CAS  Google Scholar 

  35. Endo M, Nishimura K, Kim YA, Hakamada K, Matushita T, Dresselhaus MS, Dresselhaus G (1999) Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons. J Mater Res 14:4474–4477

    Article  CAS  Google Scholar 

  36. Tan P, Zhang S-L, Yue KT, Huang F, Shi Z, Zhou X, Gu Z (1997) Comparative Raman study of carbon nanotubes prepared by dc arc discharge and catalytic methods. J Ram Spec 28:369–372

    Article  CAS  Google Scholar 

  37. Paunovic P, Dimitrov AT, Popovski O, Slavkov D, Hadzi Jordanov S (2007) Effect of carbon nanotubes support in improving the performance of mixed electrocatalysts for hydrogen evolution. Mac J Chem Chem Eng 26:87–93

    CAS  Google Scholar 

  38. Behl WK, Toni JE (1971) Anodic oxidation of cobalt in potassium hydroxide electrolytes. J Electroanal Chem 31:63–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Royal Society of United Kingdom, NATO, and European Commission. Special gratitude from the first author to professor D. J. Fray and Dr. K. Swand for their extensive help and advice throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perica Paunović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrov, A.T., Tomova, A., Grozdanov, A. et al. Electrochemical production, characterization, and application of MWCNTs. J Solid State Electrochem 17, 399–407 (2013). https://doi.org/10.1007/s10008-012-1896-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1896-z

Keywords

Navigation