Skip to main content
Log in

Mechanism of the palladium-catalyzed hydrothiolation of alkynes to thioethers: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanisms of the palladium-catalyzed hydrothiolation of alkynes with thiols were investigated using density functional theory at the B3LYP/6-31G(d, p) (SDD for Pd) level. Solvent effects on these reactions were explored using the polarizable continuum model (PCM) for the solvent tetrahydrofuran (THF). Markovnikov-type vinyl sulfides or cis-configured anti-Markovnikov-type products were formed by three possible pathways. Our calculation results suggested the following: (1) the first step of the cycle is a proton-transfer process from thiols onto the palladium atom to form a palladium-thiolate intermediate. The palladium-thiolate species is attacked on alkynes to obtain an elimination product, liberating the catalyst. (2) The higher activation energies for the alkyne into the palladium–thiolate bond indicate that this step is the rate-determining step. The Markovnikov-type vinyl sulfide product is favored. However, for the aromatic alkyne, the cis-configured anti-Markovnikov-type product is favored. (3) The activation energy would reduce when thiols are substituted with an aromatic group. Our calculated results are consistent with the experimental observations of Frech and colleagues for the palladium-catalyzed hydrothiolation of alkynes to thiols.

Density functional theory calculations on the mechanisms of the palladium-catalyzed hydrothiolation of aliphatic and aromatic alkynes with aliphatic and aromatic thiols suggest three pathways leading to the formation of Markovnikov-type vinyl sulfides or cis-configured anti-Markovnikov-type products

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roncali J (1992) Chem Rev 92:711–738

    Article  CAS  Google Scholar 

  2. Cortez MA, Grayson SM (2010) Macromolecules 43:4081–4090

    Article  CAS  Google Scholar 

  3. Konkolewicz D, Gray-Weale A, Perrier SB (2009) J Am Chem Soc 131:18075–18077

    Article  CAS  Google Scholar 

  4. Kloxin CJ, Scott TF, Bowman CN (2009) Macromolecules 42:2551–2556

    Article  CAS  Google Scholar 

  5. Ahmed E, Kim FS, Xin H, Jenekhe SA (2009) Macromolecules 42:8615–8618

    Article  CAS  Google Scholar 

  6. Fairbanks BD, Scott TF, Kloxin CJ, Anseth KS, Bowman CN (2008) Macromolecules 42:211–217

    Article  Google Scholar 

  7. Ma Z, Rao L, Bierbach U (2009) J Med Chem 52:3424–3427

    Article  CAS  Google Scholar 

  8. Szilragyi A, Fenyvesi F, Majercsik O, Pelyvas IF, Bacskay I, Feher P, Varadi J, Vecsernyes M, Herczegh P (2006) J Med Chem 49:5626–5630

    Article  Google Scholar 

  9. Johannesson P, Lindeberg G, Johansson A, Nikiforovich GV, Gogoll A, Synnergren B, Le Greves M, Nyberg F, Karlen A, Hallberg A (2002) J Med Chem 45:1767–1777

    Article  CAS  Google Scholar 

  10. Meng D, Chen W, Zhao W (2007) J Nat Prod 70:824–829

    Article  CAS  Google Scholar 

  11. Zhang Y, Liu S, Che Y, Liu X (2007) J Nat Prod 70:1522–1525

    Article  CAS  Google Scholar 

  12. Dvorak CA, Schmitz WD, Poon DJ, Pryde DC, Lawson JP, Amos RA, Meyers AI (2000) Angew Chem Int Ed 39:1664–1666

    Article  CAS  Google Scholar 

  13. Schaumann E (2007) Top Curr Chem 274:1–26

    Article  CAS  Google Scholar 

  14. Boaz NW, Fox KM (1993) J Org Chem 58:3042–3045

    Article  CAS  Google Scholar 

  15. Majumdar KC, Kundu UK, Ghosh SK (2002) Org Lett 4:2629–2631

    Article  CAS  Google Scholar 

  16. Liu Z, Mehta SJ, Lee KS, Grossman B, Qu H, Gu X, Nichol GS, Hruby LJ (2012) J Org Chem 77:1289–1300

    Article  CAS  Google Scholar 

  17. Chou SSP, Wey SJ (1990) J Org Chem 55:1270–1274

    Article  CAS  Google Scholar 

  18. Surasani SR, Peddinti RK (2011) Tetrahedron Lett 52:4615–4618

    Article  CAS  Google Scholar 

  19. Mizuno H, Domon K, Masuya K, Tanino K, Kuwajima I (1999) J Org Chem 64:2648–2656

    Article  CAS  Google Scholar 

  20. Trost BM, Lavoie AC (1983) J Am Chem Soc 105:5075–5090

    Article  CAS  Google Scholar 

  21. Liu Z, Rainier JD (2005) Org Lett 7:131–134

    Article  CAS  Google Scholar 

  22. Macnaughtan ML, Gary JB, Gerlach DL, Johnson MJA, Kampf JW (2009) Organometallics 28:2880–2887

    Article  CAS  Google Scholar 

  23. Koelle U, Rietmann C, Tjoe J, Wagner T, Englert U (2005) Organometallics 14:703–713

    Article  Google Scholar 

  24. Burling S, Field LD, Messerle BA, Vuong KQ, Turner P (2003) Dalton Trans 2003:4181–4191

  25. Cao C, Fraser LR, Love JA (2005) J Am Chem Soc 127:17614–17615

    Article  CAS  Google Scholar 

  26. Fraser LR, Bird J, Wu Q, Cao C, Patrick BO, Love JA (2007) Organometallics 26:5602–5611

    Article  CAS  Google Scholar 

  27. Shoai S, Bichler P, Kang B, Buckley H, Love JA (2007) Organometallics 26:5778–5781

    Article  CAS  Google Scholar 

  28. Yang J, Sabarre A, Fraser LR, Patrick BO, Love JA (2009) J Org Chem 74:182–187

    Article  CAS  Google Scholar 

  29. Yang Y, Rioux RM (2011) Chem Commun 47:6557–6559

    Article  CAS  Google Scholar 

  30. Liu J, Lam JWY, Jin CKW, Ng JCY, Shi J, Su H, Yeung KF, Hong Y, Faisal M, Yu Y, Wong KS, Tang BZ (2011) Macromolecules 44:68–79

    Article  CAS  Google Scholar 

  31. Zhao H, Peng J, Cai M (2012) Catal Lett 142:138–142

    Article  CAS  Google Scholar 

  32. Field LD, Messerle BA, Vuong KQ, Turner P (2009) Dalton Trans 2009:3599–3614

  33. Ananikov VP, Orlov LV, Beletskaya IP (2006) Organometallics 25:1970–1981

    Article  CAS  Google Scholar 

  34. Malyshev DA, Scott NM, Marion N, Stevens ED, Ananikov VP, Beletskaya IP, Nolan SP (2006) Organometallics 25:4462–4677

    Article  CAS  Google Scholar 

  35. Kondoh A, Yorimitsu H, Oshima K (2007) Org Lett 9:1383–1385

    Article  CAS  Google Scholar 

  36. Ananikov VP, Orlov NV, Beletskaya IP, Khrustalev VN, Antipin MY, Timofeeva TV (2007) J Am Chem Soc 129:7252–7253

    Article  CAS  Google Scholar 

  37. Ogawa A, Kawakami JI, Mihara M, Ikeda T, Sonoda N, Irao T (1997) J Am Chem Soc 119:12380–12381

    Article  CAS  Google Scholar 

  38. Ananikov VP, Beletskaya IP (2007) Pure Appl Chem 79:1041–1056

    Google Scholar 

  39. Higuchi Y, Atobe S, Tanaka M, Kamiya I, Yamamoto T, Nomoto A, Sonoda M, Ogawa A (2011) Organometallics 30:4539–4543

    Article  CAS  Google Scholar 

  40. McDonald JV, Corbin JL, Newton WE (1976) Inorg Chem 15:2056–2061

    Article  CAS  Google Scholar 

  41. Delp SA, Munro-leighton C, Goj LA, Ramírez MA, Gunnoe TB, Petersen JL, Boyle PD (2007) Inorg Chem 46:2365–2367

    Article  CAS  Google Scholar 

  42. Corma A, Gonzalez-Arellano C, Iglesias M, Sanchez F (2010) Appl Catal A 375:49–54

    Article  CAS  Google Scholar 

  43. Weiss CJ, Marks TJ (2010) J Am Chem Soc 132:10533–10546

    Article  CAS  Google Scholar 

  44. Yadav JS, Reddy BVS, Raju A, Ravindar K, Baishya G (2007) Chem Lett 36:1474–1475

    Article  CAS  Google Scholar 

  45. Weiss CJ, Wobser SD, Marks TJ (2010) Organometallics 29:6308–6320

    Article  CAS  Google Scholar 

  46. Giuseppe AD, Castarlenas R, Perez-Torrente J, Crucianelli M, Polo V, Sancho R, Lahoz FJ, Oro LA (2012) J Am Chem Soc 134:8171–8183

    Article  Google Scholar 

  47. Gerber R, Frech CM (2012) Chem Eur J 18:8901–8905

    Article  CAS  Google Scholar 

  48. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  49. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  50. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  51. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–125

    Article  CAS  Google Scholar 

  52. Xu LP, Hilton MJ, Zhang XH, Norrby PO, Wu YD, Sigman MS, Wiest O (2014) J Am Chem Soc 136:1960–1967

    Article  CAS  Google Scholar 

  53. Holder JC, Zou LF, Marziale AN, Liu P, Lan Y, Gatti M, Kikushima K, Houk KN, Stoltz BM (2013) J Am Chem Soc 135:14996–15007

    Article  CAS  Google Scholar 

  54. Katcher MH, Norrby PO, Doyle AG (2014) Organometallics 33:2121–2133

    Article  CAS  Google Scholar 

  55. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  56. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03 (Revision E01). Gaussian, Inc., Pittsburgh

  58. Polavarapu A, Stillabower JA, Stubblefield SGW, Taylor WM, Baik MH (2012) J Org Chem 77:5914–5921

    Article  CAS  Google Scholar 

  59. McCormick MC, Keijzer K, Polavarapu A, Schultz FA, Baik MH (2014) J Am Chem Soc 136:8992–9000

    Article  CAS  Google Scholar 

  60. Ghosh S, Baik MH (2011) Inorg Chem 50:5946–5957

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Lanzhou University of Arts and Science Research and innovation team of new chemical materials. We are grateful to the Gansu Province Supercomputer Center for essential support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-hui Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information

Text giving the complete citation for [57], tables giving Cartesian coordinates for the calculated stationary structures and the sum of the electronic and zero-point energies for the transition and ground states obtained from the DFT calculations. (DOC 560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xh., Geng, Zy., Wang, Kt. et al. Mechanism of the palladium-catalyzed hydrothiolation of alkynes to thioethers: a DFT study. J Mol Model 20, 2409 (2014). https://doi.org/10.1007/s00894-014-2409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2409-z

Keywords

Navigation