Skip to main content
Log in

Acidicapsa ferrireducens sp. nov., Acidicapsa acidiphila sp. nov., and Granulicella acidiphila sp. nov.: novel acidobacteria isolated from metal-rich acidic waters

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Four novel strains of Acidobacteria were isolated from water samples taken from pit lakes at two abandoned metal mines in the Iberian Pyrite Belt mining district, south–west Spain. Three of the isolates belong to the genus Acidicapsa (MCF9T, MCF10T, and MCF14) and one of them to the genus Granulicella (MCF40T). All isolates are moderately acidophilic (pH growth optimum 3.8–4.1) and mesophilic (temperature growth optima 30–32 °C). Isolates MCF10T and MCF40T grew at pH lower (<3.0) than previously reported for all other acidobacteria. All four strains are obligate heterotrophs and metabolised a wide range of sugars. While all four isolates are obligate aerobes, MCF9T, MCF10T, and MCF14 catalysed the reductive dissolution of the ferric iron mineral schwertmannite when incubated under micro-aerobic conditions. Isolates MCF9T and MCF14 shared 99.5% similarity of their 16 S rRNA genes, and were considered to be strains of the same species. The major quinone of strains MCF10T, MCF9T, and MCF40T is MK-8, and their DNA G + C contents are 60.0, 59.7, and 62.1 mol%, respectively. Based on phylogenetic and phenotypic data, three novel species, Acidicapsa ferrireducens strain MCF9T (=DSM 28997T = NCCB 100575T), Acidicapsa acidiphila strain MCF10T (=DSM 29819T = NCCB 100576T), and Granulicella acidiphila strain MCF40T (DSM 28996T = NCCB 100577T), are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Auld RR, Myre M, Mykytczuk NC, Leduc LG, Merritt TJ (2013) Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. J Microbiol Methods 93:108–115

    Article  CAS  PubMed  Google Scholar 

  • Baik KS, Choi JS, Kwon J, Park SC, Hwang YM, Kim MS, Kim EM, Seo DC, Cho JS, Seong CN (2013) Terriglobus aquaticus sp. nov., isolated from an artificial reservoir. Int J Syst Evol Microbiol 63:4744–4749

    Article  CAS  PubMed  Google Scholar 

  • Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16 S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coupland K, Johnson DB (2008) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279:30–35

    Article  CAS  PubMed  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Falagán C, Johnson DB (2014) Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18:1067–1073

    Article  PubMed  Google Scholar 

  • Falagán C, Johnson DB (2016) Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile. Int J Syst Evol Microbiol 66:206–211

    Article  PubMed  PubMed Central  Google Scholar 

  • Falagán C, Sánchez-España J, Johnson DB (2014) New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiol Ecol 87:231–243

    Article  PubMed  Google Scholar 

  • Falagán C, Sánchez-España FJ, Yusta I, Johnson DB (2015) Microbial communities in sediments in acidic, metal-rich mine lakes: results from a study in south–west Spain. Adv Mat Res 1130:7–10.

    Google Scholar 

  • Falagán C, Sánchez-España J, Yusta I, Johnson DB (2016) New insight into the microbiology of meromictic acidic pit lakes in the Iberian Pyrite Belt (Spain). In Drebenstedt C, Paul M (eds) Proceeding International Mine Water Association 2016: Mining Meets Water – Conflicts and Solutions, pp. 192–198.

  • Foesel BU, Mayer S, Luckner M, Wanner G, Rohde M, Overmann J (2016) Occallatibacter riparius gen. nov., sp. nov. and Occallatibacter savannae sp. nov., acidobacteria isolated from Namibian soils, and emended description of the family Acidobacteriaceae. Int J Syst Evol Microbiol 66:216–229

    Google Scholar 

  • García-Moyano A, González-Toril E, Aguilera A, Amils R (2012) Comparative microbial ecology study of the sediments and the water column of Río Tinto, an extreme acidic environment. FEMS Microbiol Ecol 81:303–314

    Article  PubMed  Google Scholar 

  • González-Toril E, Santofimia E, López-Pamo E, García-Moyano A, Aguilera Á, Amils R (2014) Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the Río Tinto basin (Iberian Pyrite Belt). Int Microbiol 17:225–233

    PubMed  Google Scholar 

  • Hallberg KB, Johnson DB (2003) Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 71:139–148.

    Article  CAS  Google Scholar 

  • Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hedrich S, Johnson DB (2013) Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. FEMS Microbial Lett 349:40–45.

    CAS  Google Scholar 

  • Huang S, Vieira S, Bunk B, Riedel T, Spröer C, Overmann J (2016) First complete genome sequence of a subdivision 6 Acidobacterium strain. Genome Announc 4:e00469–16.

    PubMed  PubMed Central  Google Scholar 

  • Huber KJ, Geppert AM, Wanner G, Foesel BU, Wüst PK, Overmann J (2016) Vicinamibacter silvestris—the first representative of the globally widespread subdivision 6 Acidobacteria isolated from subtropical savannah soil. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001131

    Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Hallberg KB (2007) Techniques for detecting and identifying acidophilic mineral-oxidising microorganisms. In Rawlings DE, Johnson DB (eds), Biomining Springer-Verlag, Heidelberg, pp 237–262

    Google Scholar 

  • Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744.

    PubMed  PubMed Central  Google Scholar 

  • Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.: An acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7

    Article  CAS  Google Scholar 

  • Kishimoto N, Fukaya F, Inagaki K, Sugio T, Tanaka H, Tano T (1995) Distribution of bacteriochlorophyll-a among aerobic and acidophilic bacteria and light-enhanced CO2-incorporation in Acidiphilium rubrum. FEMS Microbiol Ecol 16:291–296

    Article  CAS  Google Scholar 

  • Kleinsteuber S, Müller FD, Chatzinotas A, Wendt-Potthoff K, Harms H (2008) Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. FEMS Microbiol Ecol 63:107–117

    Article  CAS  PubMed  Google Scholar 

  • Kulichevskaya IS, Kostina LA, Valášková V, Rijpstra WIC, Sinninghe Damsté JS, de Boer W, Dedysh SN (2012) Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol 62:1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodóvar GR, Pacual E, Sáez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner Deposita 33:2–30

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, other authors (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Männistö MK, Rawat S, Starovoytov V, Häggblom MM (2012) Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. Int J Syst Evol Microbiol 62:2097–2106

    Article  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Okamura K, Kawai A, Yamada T, Hiraishi A (2011) Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria. FEMS Microb Lett 3:138–142.

    Article  Google Scholar 

  • Pankratov TA, Dedysh SN (2010) Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959

    Article  CAS  PubMed  Google Scholar 

  • Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-España FJ, Santofimia E, González-Toril E, San Martín-Úriz P, López-Pamo E, Amils R (2007). Physicochemical and microbiological stratification of a meromictic, acidic mine pit lake (San Telmo, Iberian Pyrite Belt). In Cidu R, Frau F (eds) Proceeding of the International Mine Water Association 2007: Water in Mining Environments, pp. 447–451.

  • Santofimia E, González-Toril E, López-Pamo E, Gomariz M, Amils R, Aguiler A (2013) Microbial diversity and its relationship to physicochemical characteristics of the water in two extreme acidic pit lakes from the Iberian Pyrite Belt (SW Spain). PLoS One 8:e66746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note no 101. MIDI Inc, Newark, DE

    Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd edn. Wiley, Weinheim.

    Book  Google Scholar 

  • Stookey L (1970) Ferrozine –a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RM, Kreig NR (2007) Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for General and Molecular Microbiology 3rd edn. ASM Press, Washington DC, pp 330–393.

    Google Scholar 

  • Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167

    Article  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Yang Y, Wan M-x, Shi W-y, Peng H, Qiu G-z, Zhou J-z, Liu X-d (2007) Bacterial diversity and community structure in acid mine drainage from Dabaoshan Mine, China. Aquat Microb Ecol 47:141–151

    Article  CAS  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R (2008) The All-Species Living Tree project: a 16 S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Anja Frühling, Dr. Susanne Verbarg, and Dr. Brian Tindall (DSMZ-German Collection of Microorganisms and Cell Cultures) for the analysis and identification of polar lipids. Birgit Grün, Brigitte Sträubler, Gabi Pötter, Dr. Peter Schumann, and Dr. Cathrin Spröer (all from DSMZ) for analysis of fatty acids, G + C-content determination and DDH analyses. Dr. Iñaki Yusta and Dr. Javier Sánchez-España for the help provided. The work presented in this paper was partially founded by the Spanish Ministry of Science and Innovation (Project Reference Number CGL2009-09070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Falagán.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5844 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falagán, C., Foesel, B. & Johnson, B. Acidicapsa ferrireducens sp. nov., Acidicapsa acidiphila sp. nov., and Granulicella acidiphila sp. nov.: novel acidobacteria isolated from metal-rich acidic waters. Extremophiles 21, 459–469 (2017). https://doi.org/10.1007/s00792-017-0916-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0916-4

Keywords

Navigation